Overview of Asthma

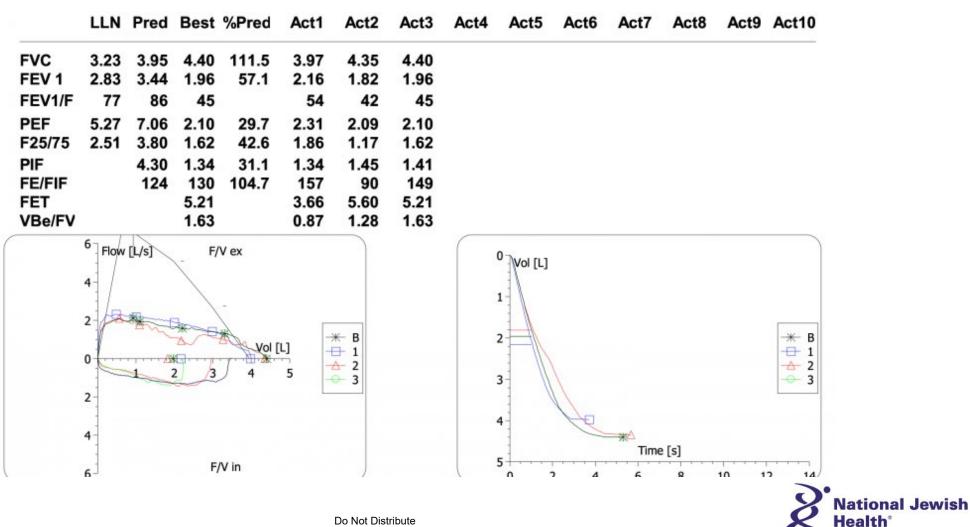
Rohit Katial, MD, FAAAAI, FACAAI, FACP Professor of Medicine Associate Vice President of Education Director, Center for Clinical Immunology Irene J. & Dr. Abraham E. Goldminz, Chair in Immunology and Respiratory Medicine

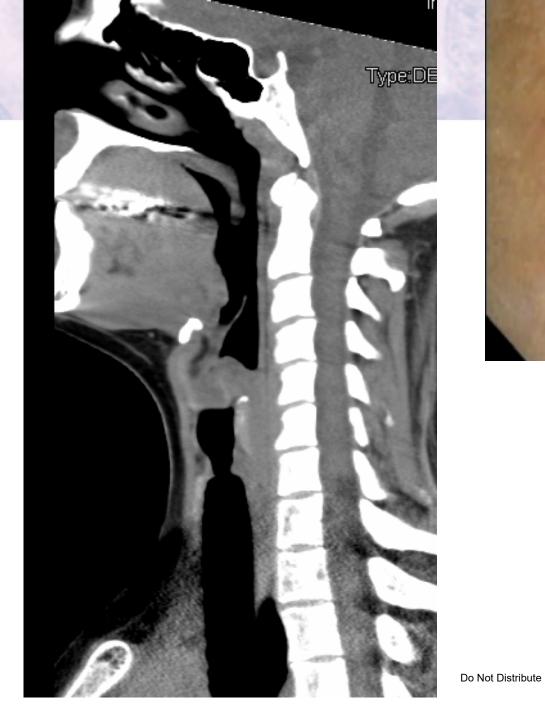
Breathing Science is Life.

What is Asthma?

Asthma is a chronic inflammatory disease of the airway with

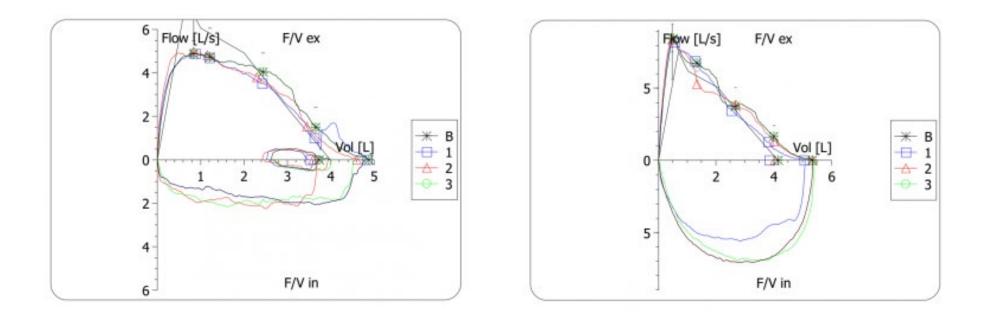
- Airway obstruction that may or may not be reversible, either spontaneously or with medication
- Airway inflammation caused by many cellular components
- Increased airway hyperresponsiveness


Differential Dx Of Wheezing

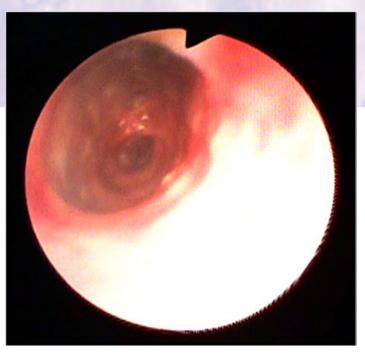

- "Asthma"
- VCD
- ABPA
- Chronic Eosinophilic Pneumonia
- Airway Tumors
- Bronchostenosis/TBM/DAC
- CHF
- Infection

- TB
- Tonsils
- Foreign body
- Goiter
- Post polio syndrome
- COPD
- PE
- Fixed lesions

Spiro

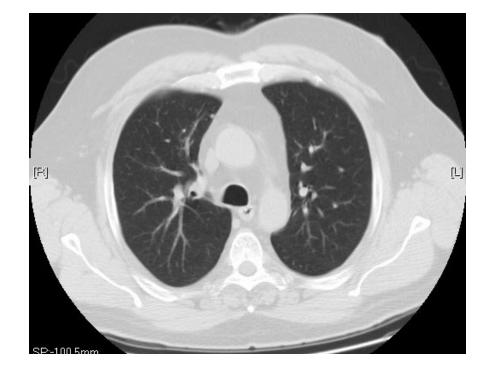


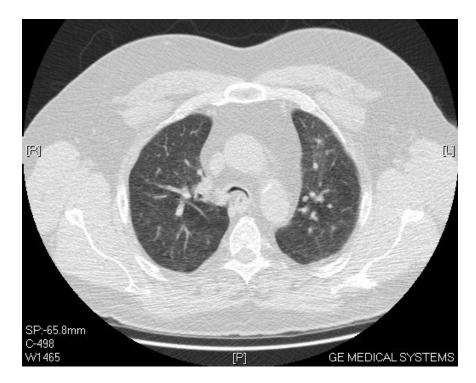
tional Jewish alth°



5/2012 (pre-dilation)

9/2012 (post-dilation)

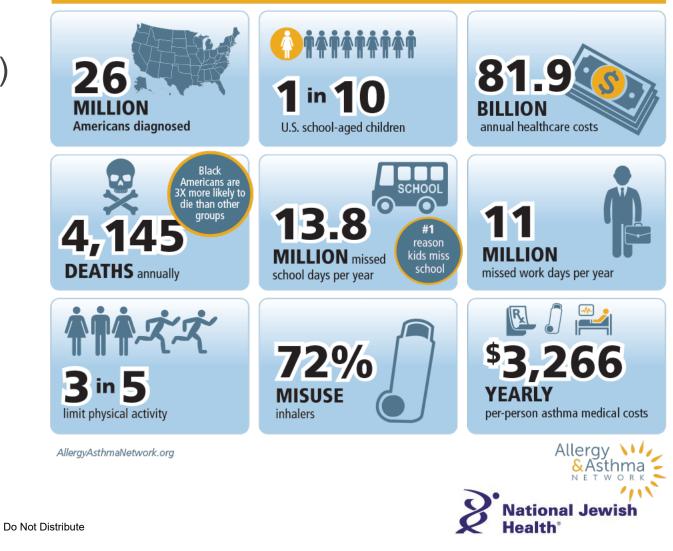




Cicatricial Pemphigoid

Dyspnea at Rest and with Exertion/ "Severe Asthma"

Dynamic Expiratory End-Inspiratory Dynamic Expiratory CT Severe Tracheomalacia


Severe Asthma as a Multi-Faceted Disease with High Morbidity

- 1.7 M ED visits in 2015 (986K in 2020)
- 11 M physician office visits in 2014
- 9.8 M asthma attacks in 2021
- 10.6 deaths per million in 2021
- Annual economic cost \$82 B (2013)

Disparities in Allergy & Asthma Care: Leveling The Playing Field © 2022 by Vivian Hernandez-Trujillo , MD is licensed under <u>CC BY-ND 4.0</u>

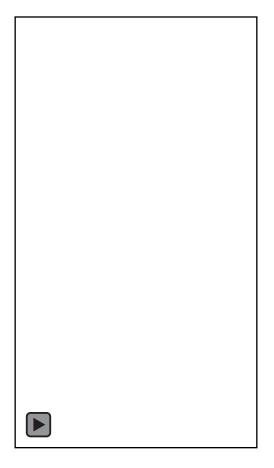
https://www.cdc.gov/asthma, accessed 8Sep2024 Nurmagambetov T, Kuwahara R, Garbe P. Annals ATS 2018;15(3):348-56

Asthma

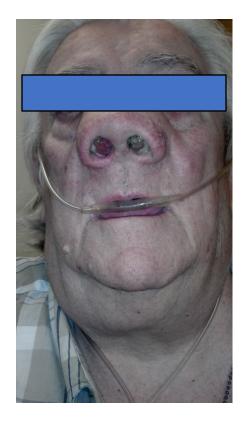
How should an accurate diagnosis of severe uncontrolled asthma be made?

Check adherence/ inhaler technique

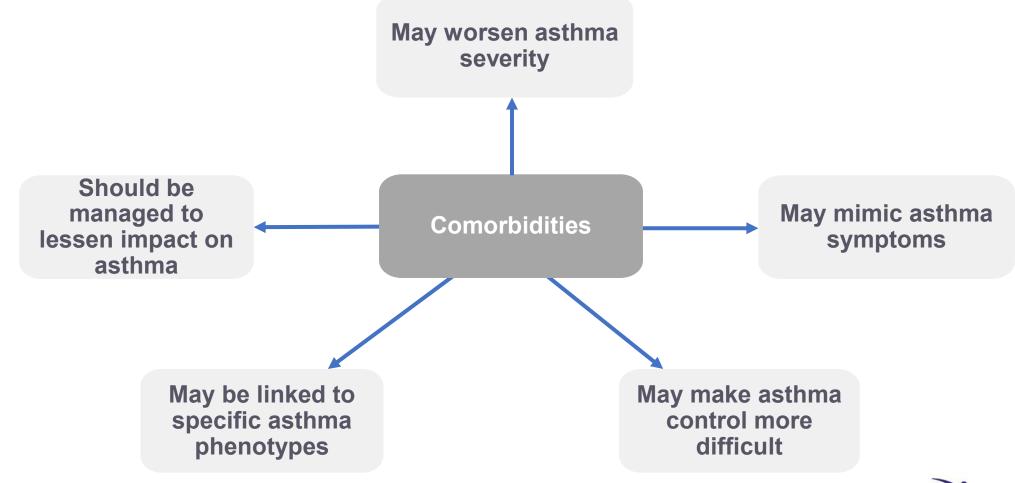
Screen for comorbidities



Rule out other potential diagnoses Check for triggers/irritants



Assess asthma control



Comorbidities Have Significant Implications For Evaluation/ Assessment Of Asthma Control And Medication Needs

Defining Inflammatory Diseases of the Upper Airway in Severe Asthma

- Chronic rhinosinusitis with nasal polyps (CRSwNP)
 - 20%-60% of patients with asthma have CRSwNP
 - Associated with eosinophilia and T2-high asthma phenotype
 - Associated with more severe asthma, lower FEV₁, and more frequent exacerbations
- Chronic rhinosinusitis without nasal polyps (CRSsNP)
 - 30%-40% of patients with asthma have CRSsNP
 - Less often associated with T2-high inflammation
 - More commonly associated with T2-low asthma phenotype

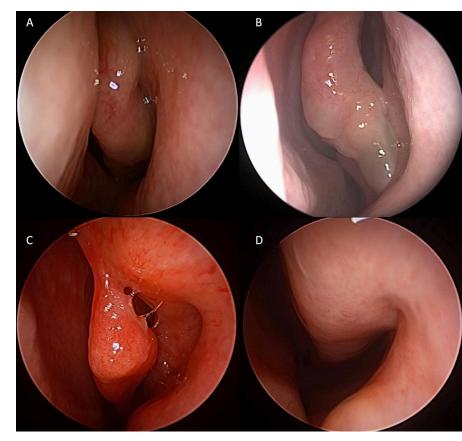


Photo Credit: Osie G et al, Rhinology 2022; 60(5):335-46

Defining Inflammatory Diseases of the Upper Airway in Severe Asthma

- Aspirin-exacerbated respiratory disease (AERD)
 - Samter's Triad: asthma, nasal polyps, and aspirin sensitivity
 - Strong association with T2-high asthma
 - 7% of asthma, but 14% of severe asthma
 - More ED visits, hospitalizations, and exacerbations
- Allergic rhinitis (AR)
 - 80%-100% of individuals with asthma have AR
 - AR and asthma share common pathophysiology
 - AR is a risk factor for the onset and severity of asthma
 - Treatment of AR can improve asthma control

Key Point: upper airway inflammation is common and can exacerbate or complicate asthma management

Do Not Distribute

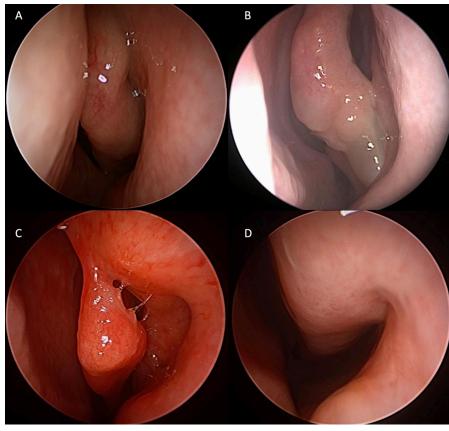


Photo Credit: Osie G et al, Rhinology 2022; 60(5):335-46

Comorbidities Can Impact Degree of Asthma Improvement with Biologics

- International Severe Asthma Registry (ISAR)
- 1765 patients started on biologics, most on anti-IL-5 therapy
- Compared to those without, those with co-morbid CRS with or without NPs:
 - 23% fewer exacerbations per year
 - 59% higher odds of better asthma control after starting biologics
 - Additional FEV1% predicted improvement of 3.2%
 - No difference in weaning OCS doses
- No effect of co-morbid AR or AD
- Corroborates findings of individual biologic agents in subanalysis studies of RTCs & real-world trials

Pelaia C, et al. In Do Comorbidities Influence the Response to Biologics in Severe Asthma? Am J Respir Crit Care Med. 2024;209(3):233-235 doi:10.1164/rccm.202311-2103ED.

Differential Diagnoses for Eosinophilia and Pulmonary Symptoms

Other Forms of ANCA-Associated Vasculitis

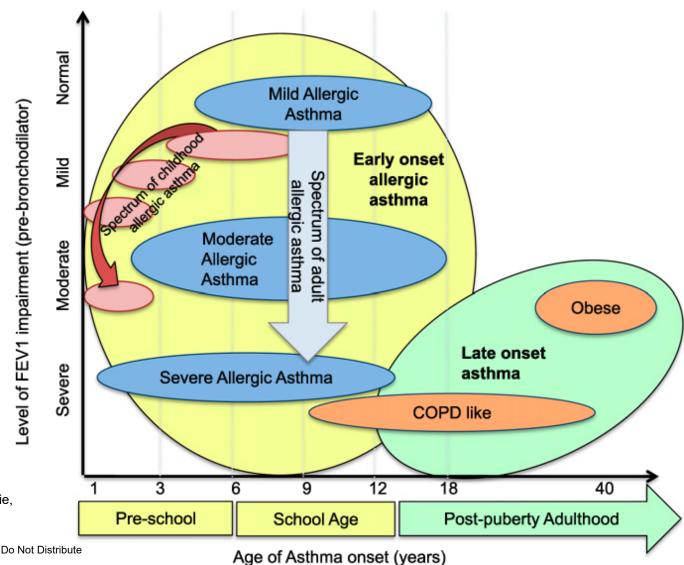
- AAV is a group of 3 separate diseases: MPA, GPA, and EGPA¹
- GPA and MPA are more likely to have kidney involvement and to be ANCA positive, and less likely to be associated with asthma

Hypereosinophilic Syndrome

- Distinction between EGPA and HES is challenging as both conditions are characterized by eosinophilia and widespread organ involvement^{2,4}
- Patients with HES usually do not have asthma or vasculitic complications and are ANCA negative⁴

Infection and Other Exposures

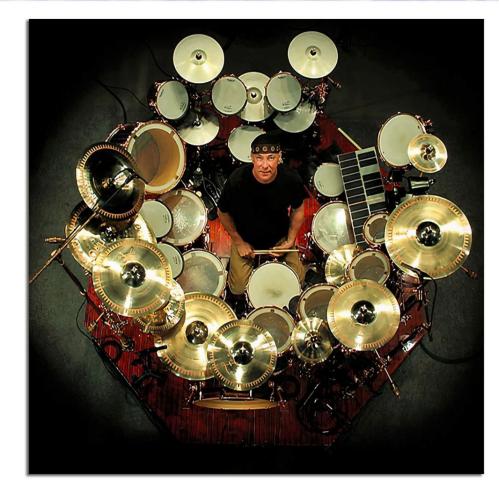
- Stool culture could be considered, particularly in patients with GI symptoms, to exclude helminthic infections²
- Eosinophilia and respiratory symptoms are major features of allergic bronchopulmonary aspergillosis and eosinophilic pneumonia²
- Eosinophilia can also be caused by drug reactions and malignancies, such as leukemia, lymphoma, and solid tumors⁵



Jennette JC, et al. Arthritis Rheum. 2013;65(1):1-11. 2. Trivioli G, et al. Rheumatology (Oxford). 2020;59(suppl 3):iii84-iii94. 3. Yates M, et al. Clin Med (Lond). 2017;17(1):60-64. 4. Gioffredi A, et al. Front Immunol. 2014;5:549. 5. Bloom JL, et al. Rheum Dis Clin North Am. 2023;49(3):563-584.

Heterogeneity of Severe Asthma

- Asthma is not a single disease; there are many phenotypes
- There is significant overlap among phenotypes
- T2-High vs. T2-Low
- Need for precision medicine due to differential treatment responses
- Phenotypic overlap with other inflammatory conditions


Reprinted with permission of the American Thoracic Society.Copyright © 2013 American Thoracic Society. All rights reserved. Cite: Wendy C. Moore, Anne M. Fitzpatrick, Xingnan Li, Annette T. Hastie, Huashi Li, Deborah A. Meyers, and Eugene R. Bleecker /2013/ Clinical Heterogeneity in the Severe Asthma Research Program /Ann Am Thorac Soc /10/ (Suppl):S118-24/The American Journal of Respiratory and Critical Care Medicine is an official journal of the American Thoracic Society. Do

Treatment Complexity, Challenges, and Barriers

- Misdiagnosis
- Lack of recognition of uncontrolled and severe asthma
- Confounders and co-morbidities
- Medication access and cost
- Access to subspecialty care
- Medication administration complexity
- Biologic therapies
- Glucocorticoid resistance

Up to half of patients do not achieve well-controlled status with guideline-based treatment

Asthma Guidelines: The Checklist

For ALL patients with asthma

- □ Asthma control
- Medication adherence
- □ Appropriate therapy
- Inhaler technique
- **Environment (work, home)**
- Psychological issues
- □ Spirometry
- □ Tobacco use
- □ Vaccinations

For patients with uncontrolled asthma, severe asthma, or exacerbations

- □ Asthma phenotyping (Type 1/2)
- Comorbidities: OSA, CRS, GERD, eczema, obesity
- Confounders: ILO/VCD, COPD, airway aspiration, bronchiectasis, infection, airway lesion, CHF
- □ Adjust maintenance therapy
- □ Add third agent
- □ Referral to asthma specialist
- □ Rescue therapy approach
- Respiratory biologic

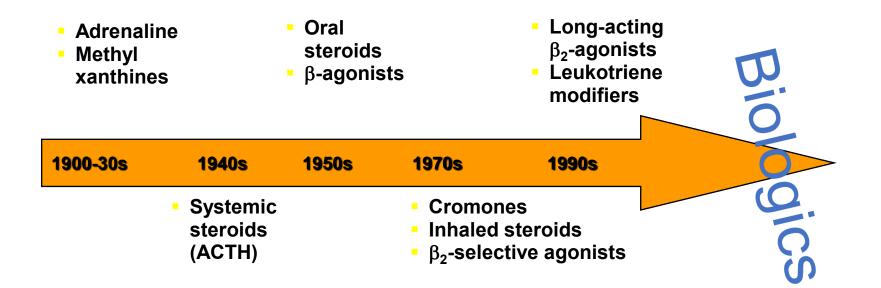
Now only Schlitz brings you-coast to coast-the world's easiest opening beer can! The new aluminum Softop can!

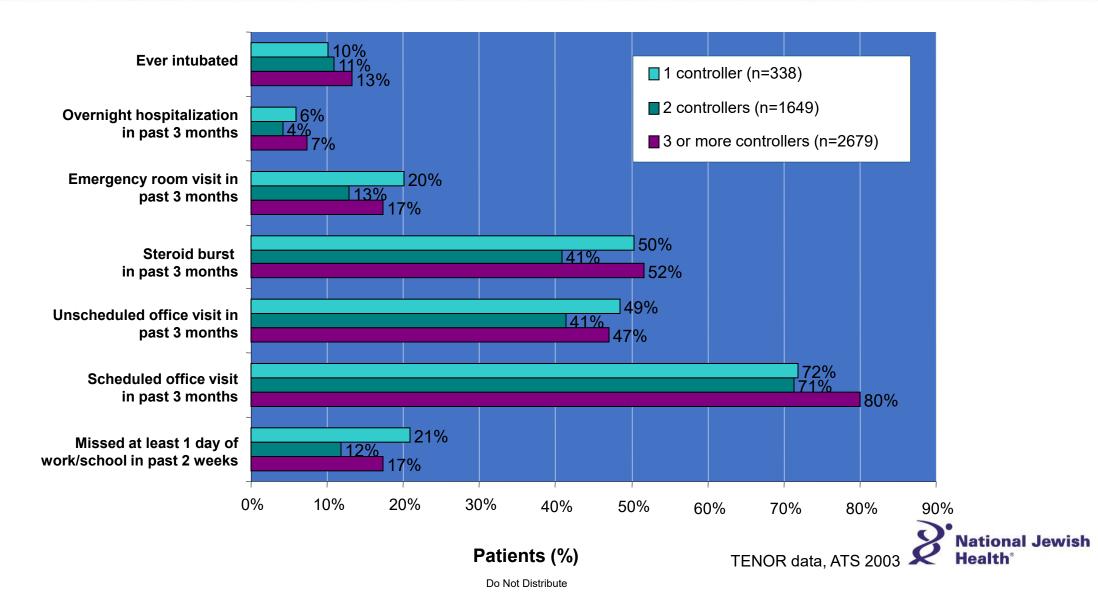
real gusto-real easy!

The Beer that made Milwaukee Famous ... singly because it tasks as good a rest to bate tweey to measure we business at a rest

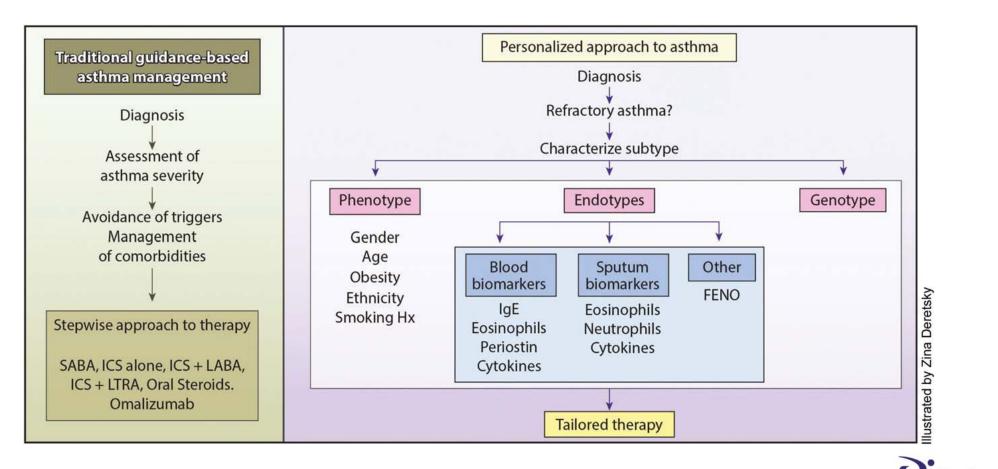
Asthma Therapy Through the Ages

 G. Cardano Diet Exercise Sleep No feathers 	T. Willis	J. Floyer • Gill • Hyssop • Syrup of sulphur • Bleeding	 W. Osler Atropine Morphine Chloroform Lobelia
1500s	1600s	1700s	1800s
			 Amyl nitrate Asthma cigarettes


Asthma Therapy – 1800s



Asthma Therapy in the 1900s



Little evidence that using additional "standard" Rx helpful

Traditional and Personalized Approach to Asthma Therapy

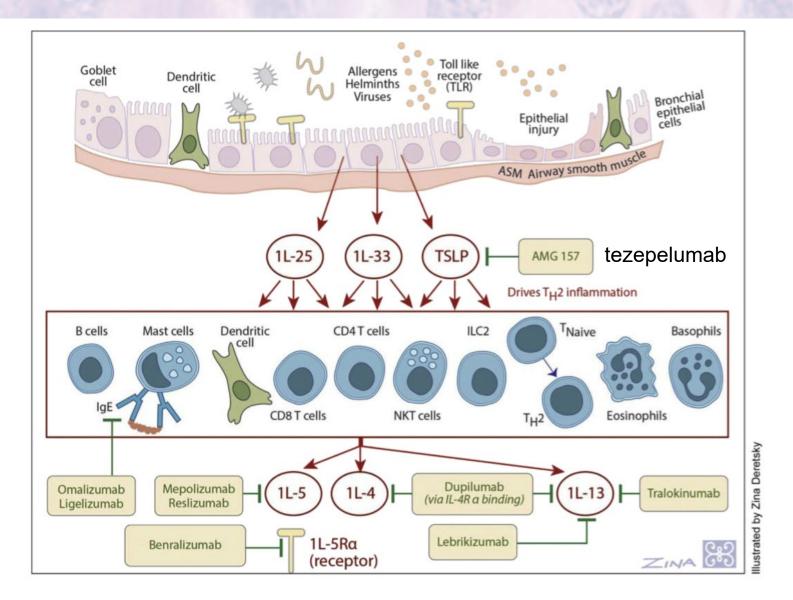
Dunn RM and Wechsler ME. Clinical Pharmacology and Therapeutics 2015; 97(1): 55-65

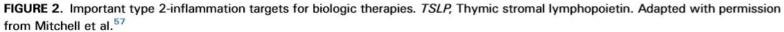
National Jewish

Success of Therapy Based on Biomarkers: Anti-IL-5 Therapy in Patients with Elevated Eosinophils

Study/Year	Intervention	Sputum Eosinophil at Entry	Success
Flood-Page et al ¹⁸ /2007	Mepolizumab	5% of patients had $>$ 3% eos	Х
Kips et al ¹⁹ /2003	Reslizumab	$\sim 30\%$ of patients had $> 3\%$ eos	Х
Haldar et al ¹⁴ /2009	Mepolizumab	All patients had $>3\%$ eos on one occasion in 2 y	\checkmark
Castro et al ¹⁵ /2011	Reslizumab	All patients had $>3\%$ eos at randomization	$\sqrt{}$
Nair et al ¹³ /2009	Mepolizumab	All patients had $>3\%$ eos on ≥ 3 occasions	$\sqrt{\sqrt{\sqrt{1}}}$

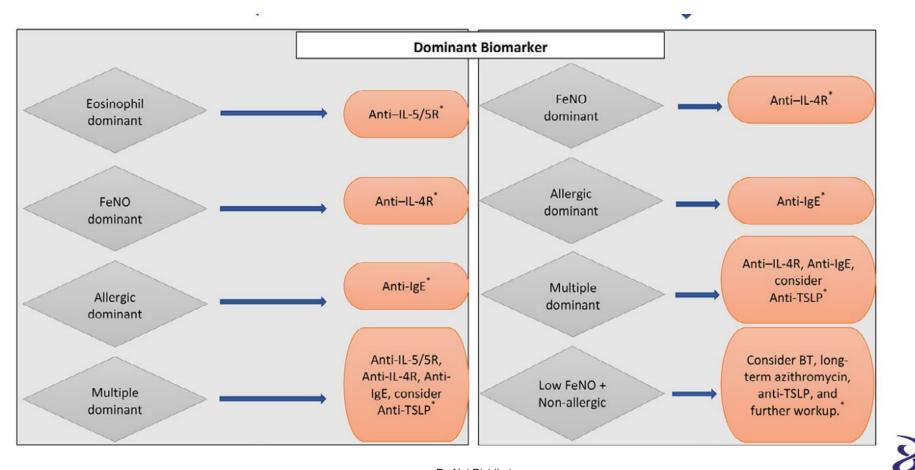
Table 1—Response to Anti-IL-5 and Eosinophil Phenotype


 $\sqrt{}$ = grade of success of intervention; eos = eosinophils; X = intervention unsuccessful.


- Success in response to Anti-IL-5 Therapy is based on eosinophil phenotype
- In 2 of the 5 studies that measured sputum eosinophils and in the three RCTs, the greater the certainty that an increase in eosinophils was persistent, the greater the success of treatment

1980 • 1989 • 1995 • 2001 • 2004 • 2007 • 2010 • 2015 • 2016 • 2018 • 2020

		5	dependent on symptoms, rescue, lung function	2004: EPR-2 updated 2004 ACT™ launched	2007 EPR-3 published; impairment* and risk** treatments based on initial severity and subsequent control+	2015 tiotropium bromide 2015: IL-5 antagonist (IgG1) 2016: IL-5 receptor antagonist(IgG4) 2012: GINA: Bronchial thermoplasty for uncontrolled asthma 2017: II	2017 PRECISION heatmaps highlight geographic regions of unmet need 2018 EPR-4 LAMA as add on therapy; (No update to biologics; 2018 OCS Stewardship & Patient Charter	2019 GINA recommends: 1. Symptom-driven or daily dose ICS 2. As-needed ICS-formoterol at steps 1 & 2 3. Refer for phenotypic assessment if uncontrolled on high dose tx; add-on biologic therapy at step 5
Majo	elines or Therapy Introduced ISION Program r		2003 first approved anti-IgE antibody	Ξ			2018: IL-4 receptor antagonist	2019 Positive results for ICS/LABA/LAMA trials in Asthma



Katial et al. JACI: In Practice 2017. 5(2): S1-S14.

Biomarkers Determining Use of Biologic

National Jewish

Do Not Distribute Wang E, Weschler M, Ann Allergy, Asthma Immunol 2022: 128:379

Total IgE as a Biomarker of Response

Allergen-specific IgE Omalizumab	Univariate analysis of INNOVATE ¹¹⁴	Allergic ^a	Number of (severe) exacerbations ^b ; responder analysis	Not predictive
Total IgE Omalizumab	Univariate analysis of 7 trials ¹¹⁵	Allergic ^c	Number and rate of (severe) exacerba- tions ^b ; AQLQ score; physician's over- all assessment, FEV ₁	Not predictive
Dmalizumab	STELLAIR ⁵⁰	Severe allergic ^c	Physician's overall assessment; exacer- bation ^b rate	≥75 IU/mL total IgE not pred
Mepolizumab	Post hoc meta-analysis of MENSA and MUSCA ²⁴	Eosinophilic ^d	Exacerbation ^e rate; FEV ₁ ; SGRQ; ACQ-5	Total IgE quartiles (≤ 30, >30 and >450 UI/mL) not pred
Benralizumab	Pooled data from SIROCCO and CALIMA ⁴⁴	Severe uncontrolled ^f	Exacerbation ^e rate	Total IgE quartiles (<62.0, ≥6 ≥176.2-<453.4, ≥453.4 kU
Dupilumab	Post hoc analysis of QUEST ¹⁵	Severe uncontrolled ^g ; allergic asthma ^h subgroup analysis	Exacerbation ^d rate; FEV ₁ ; ACQ-5 score	Ø 700 IU/mL total IgE not pr

DEC

Oppenheimer et al. / Ann Allergy Asthma Immunol 129 (2022) 169-180

Dupilumab Phase 3 Biomarker Data

A Dupilumab, 200 mg Every 2 Wk, vs. Matched Placebo							
Subgroup	No. of Patients		Relative Risk vs. Placebo (95% CI)				
	Placebo	Dupilumab					
Overall	317	631		0.52 (0.41-0.66)			
Eosinophil count							
≥300 cells/mm ³	148	264	_ — —	0.34 (0.24-0.48)			
≥150 to <300 cells/mm ³	84	173	●	0.64 (0.41-1.02)			
<150 cells/mm ³	85	193	_ _	0.93 (0.58-1.47)			
Fe _{NO}							
≥50 ppb	71	119	_ _	0.31 (0.18-0.52)			
≥25 to <50 ppb	91	180	_ _	0.39 (0.24-0.62)			
<25 ppb	149	325		0.75 (0.54-1.05)			
			0.1 0.25 0.5 0.75 1 1.5 2				
			Dupilumab Placebo Better Better				

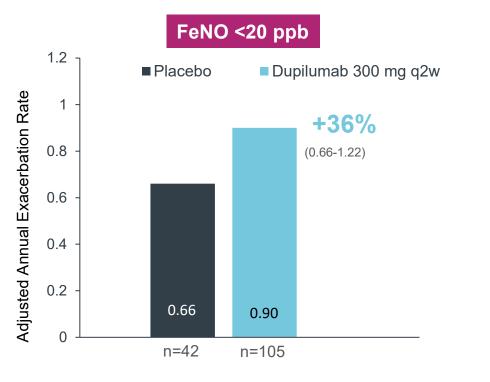
B Dupilumab, 300 mg Every 2 Wk, vs. Matched Placebo

Subgroup	No. of	Patients	Relative Risk vs. Plac	ebo (95% CI)
	Placebo	Dupilumab		. ,
Overall	321	633		0.54 (0.43-0.68)
Eosinophil count				
≥300 cells/mm ³	142	277	_ — —	0.33 (0.23-0.45)
≥150 to <300 cells/mm ³	95	175	●	0.56 (0.35-0.89)
<150 cells/mm ³	83	181	●	1.15 (0.75-1.77)
Fe _{no}				
≥50 ppb	75	124	_ — —	0.31 (0.19-0.49)
≥25 to <50 ppb	97	186	_ ——	0.44 (0.28-0.69)
<25 ppb	144	317		0.79 (0.57-1.10)
		0.1	0.25 0.5 0.75 1 1.5 2	
		-	_	
			Dupilumab Placebo Better Better	

Castro M, et al. NEJM 2018; 378:2486-2496.

High Feno And High B-eos In Combination Associated With Significantly Increased Exacerbation Rates In Patients With Moderate to Severe Asthma

Estimated annualized severe exacerbation rates over 52 weeks by baseline FeNO and b-EOS level in placebo-treated patients from Dupilumab Phase III LIBERTY ASTHMA QUEST study

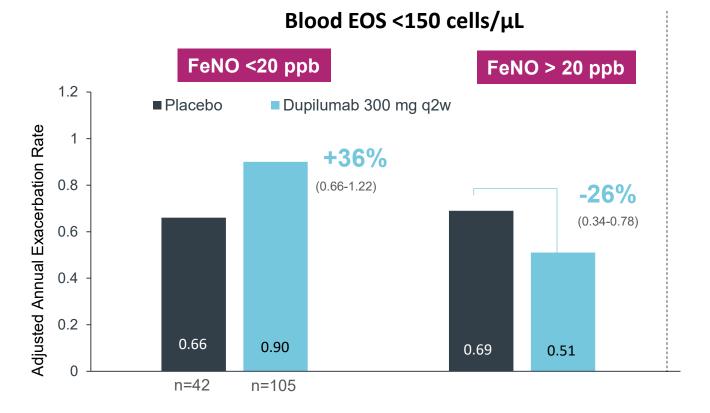

			FeNO (ppb)	
		<25	≥25 to <50	≥50
<u>v</u>	≥300	0.84	1.24	1.78
))		(n=89)	(n=97)	(n=98)
d Eosinophils (cells/µL)	≥150 to <300	0.82	1.14	0.48
4.5		(n=96)	(n=53)	(n=25)
Blood (c	<150	0.56	0.62	0.53
		(n=106)	(n=35)	(n=21)

In patients with b-EOS ≥300, the risk of exacerbations increases with increases in FeNO, while for those with b-EOS <300 the rates are similar regardless of FeNO

Combination of high b-EOS / high FeNO Predicts higher exacerbation risk

Blood EOS <150 cells/µL

In high b-EOS/high FeNO group, baseline b-EOS increased along with FeNO

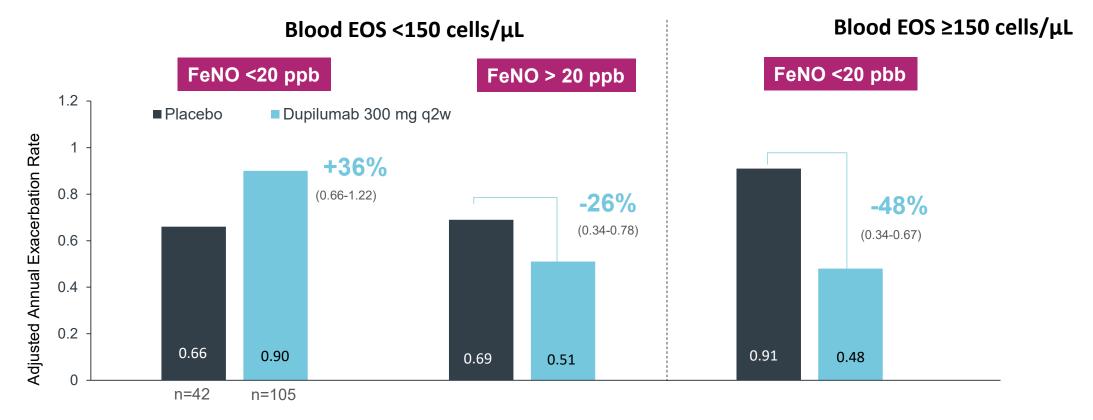

Do Not Distribute

b-EOS=blood eosinophils; FeNO=fraction of exhaled nitric oxide; BL=baseline; ppb=parts per billion

*Baseline values are the combined values across both dupilumab dosing groups studied: dupilumab 200 mg q2w and dupilumab 300 mg q2w.

1. Pavord ID et al. Eur Resp J. 2019;54:suppl 63, OA3807. 2. Pavord ID et al. Presentation at: European Respiratory Society International Congress 2019; Madrid, Spain; Sept 28-Oct 2, 2019.

In high b-EOS/high FeNO group, baseline b-EOS increased along with FeNO



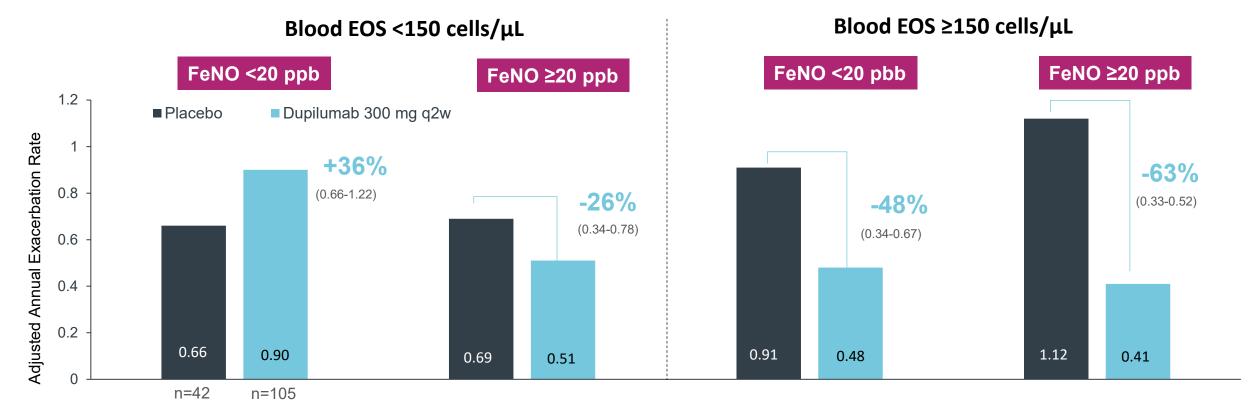
b-EOS=blood eosinophils; FeNO=fraction of exhaled nitric oxide; BL=baseline; ppb=parts per billion

*Baseline values are the combined values across both dupilumab dosing groups studied: dupilumab 200 mg q2w and dupilumab 300 mg q2w.

1. Pavord ID et al. Eur Resp J. 2019;54:suppl 63, OA3807. 2. Pavord ID et al. Presentation at: European Respiratory Society International Congress 2019; Madrid, Spain; Sept 28-Oct 2, 2019.

Do Not Distribute

In high b-EOS/high FeNO group, baseline b-EOS increased along with FeNO

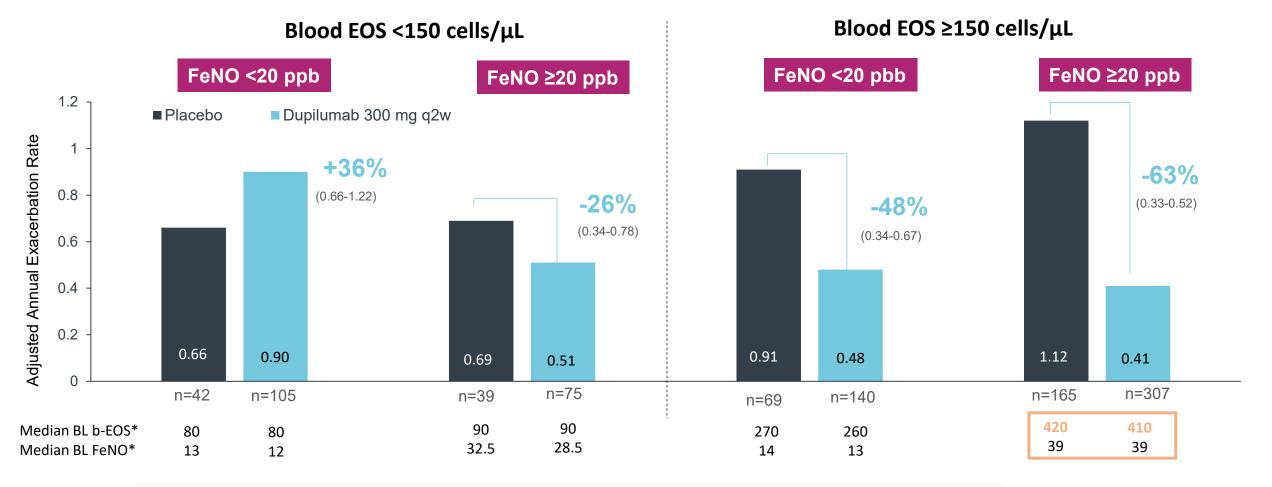

Do Not Distribute

b-EOS=blood eosinophils; FeNO=fraction of exhaled nitric oxide; BL=baseline; ppb=parts per billion

*Baseline values are the combined values across both dupilumab dosing groups studied: dupilumab 200 mg q2w and dupilumab 300 mg q2w.

1. Pavord ID et al. Eur Resp J. 2019;54:suppl 63, OA3807. 2. Pavord ID et al. Presentation at: European Respiratory Society International Congress 2019; Madrid, Spain; Sept 28-Oct 2, 2019.

Do Not Distribute


In high b-EOS/high FeNO group, baseline b-EOS increased along with FeNO

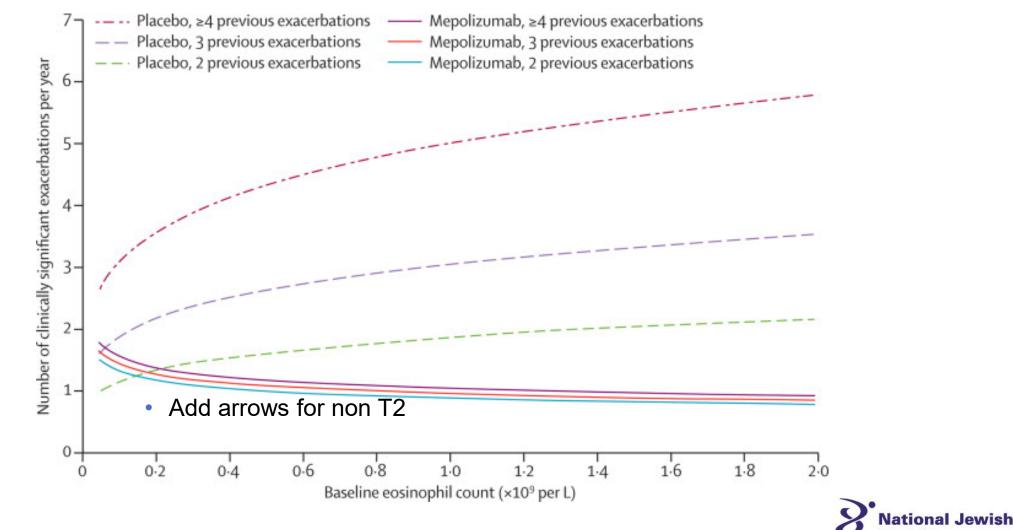
b-EOS=blood eosinophils; FeNO=fraction of exhaled nitric oxide; BL=baseline; ppb=parts per billion

*Baseline values are the combined values across both dupilumab dosing groups studied: dupilumab 200 mg q2w and dupilumab 300 mg q2w.

1. Pavord ID et al. Eur Resp J. 2019;54:suppl 63, OA3807. 2. Pavord ID et al. Presentation at: European Respiratory Society International Congress 2019; Madrid, Spain; Sept 28-Oct 2, 2019.

Do Not Distribute

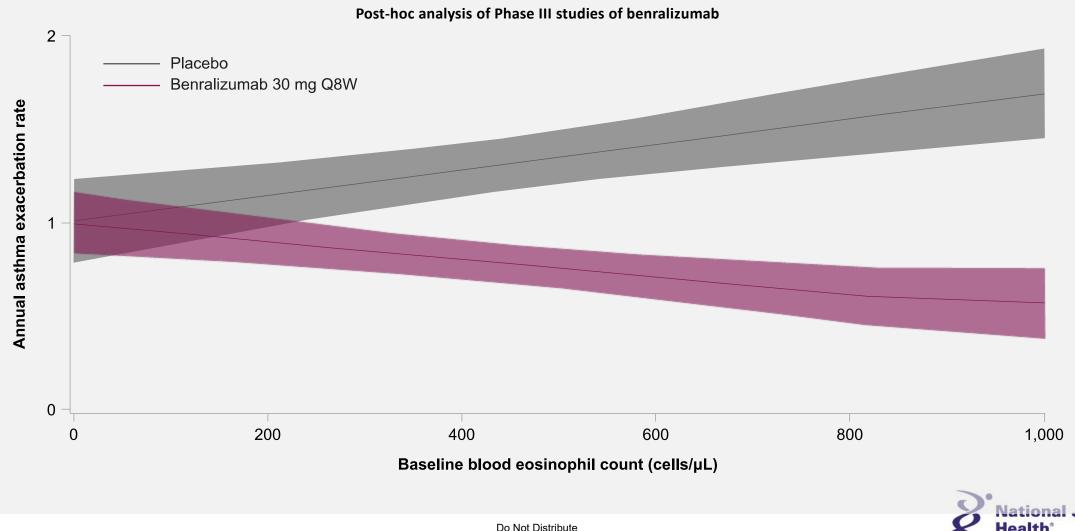
In high b-EOS/high FeNO group, baseline b-EOS increased along with FeNO



b-EOS=blood eosinophils; FeNO=fraction of exhaled nitric oxide; BL=baseline; ppb=parts per billion

*Baseline values are the combined values across both dupilumab dosing groups studied: dupilumab 200 mg q2w and dupilumab 300 mg q2w.

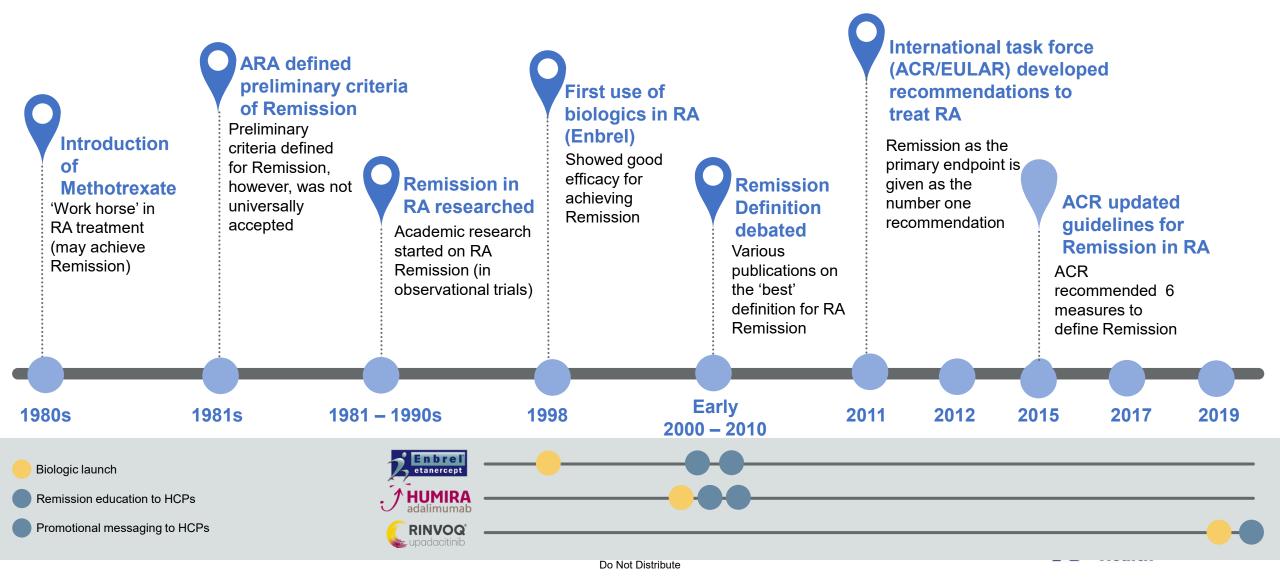
1. Pavord ID et al. Eur Resp J. 2019;54:suppl 63, OA3807. 2. Pavord ID et al. Presentation at: European Respiratory Society International Congress 2019; Madrid, Spain; Sept 28-Oct 2, 2019.


Blood eosinophil and number of exacerbations in the prior year

Lancet 2012; 380: 651-59

Do Not Distribute

Increasing baseline blood eosinophil counts is associated with exacerbation frequency in severe asthma¹



Q8W: every eight weeks

Do Not Distribute

1. Jackson DJ et al. Ability of serum IgE concentration to predict exacerbation risk and benralizumab efficacy for patients with severe eosinophilic asthma. Advances in Therapy. 2020; 37: 718–29.

RA Remission Journey

Source for data: BMJ Journals, 2004 ;BMJ Journals, 2011; NCBI 2013; American college of Rheumatology, 2015

Can RA Be A Model For How To Achieve Remission In SA

Rheumatoid arthritis	Severe asthma			
Incurable inflammatory condition ¹	✓ Incurable inflammatory condition ⁴			
Disease progression results in irreversible joint damage and visible disability ²	Disease progression results in irreversible lung function decline ⁵ and disability that is not visibly perceived; underestimated disease burden contributes to worse outcomes ⁶			
Multiple targeted treatments, including DMARDs available with a realistic goal of clinical remission ^{1,3}	Multiple targeted treatments available ⁷ ; whether remission can be achieved is currently being explored ⁸			

Do Not Distribute

DMARD = disease modifying anti-rheumatic drug. 1. Girdler SJ, et al. J Orthop. 2019;17:17-21; 2. Brown PM, et al. Clin Med (Lond). 2014;14(Suppl 6):s50-55; 3. Felson DT, et al. Arthritis Rheum. 2011;63:573–586; 4. Busse WW, et al. Eur Respir Rev. 2022;31(163):210183; 5. Pascual, RM, Peters SP. J Allergy Clin Immunol. 2009;124(5):883-892; 6. Crespo-Lessmann A, et al. BMJ Open Respir Res. 2017;4:e000189; 7. Pelaia C, et al. Front Immunol. 2020;11:603312; 8. Menzies-Gow A, et al. J Allergy Clin Immunol. 2020;145(3):757-765.

What can be achieved with biologics?

		Dupilumab	Dupilumab	Benralizumab	Benralizumab	Tezepelumab	Mepolizumab	Multiple Biologics	
		2021¹ QUEST Phase 3	2022 ² TRAVERSE OLE	2022³ SIROCCO/CALIMA Phase 3	2022 ⁴ ANDHI Phase 3b	2022⁵ NAVIGATOR Phase 3	2022 ⁶ REDES	2022 ⁷ CHRONICLE	2022 ⁸ Danish Registry
	Absence of symptoms ^{a,b} and	ACQ-5 <1.5	ACQ-5 <1.5	ACQ-6 <1.5 or ≤0.75	ACQ-6 <1.5 or ≤0.75	ACQ-6 ≤0.75 ^{a,b}	ACT ≥ 20	Majority≥ (50%) ACT ≥ 20	ACQ ≤ 1.5
Ø	Optimized/ stabilized lung function and	Post-BD FEV₁pp ≥80%	Post-BD FEV ₁ ≥80% <i>OR</i> pre- BD FEV ₁ ≥100 mL	Pre-BD FEV ₁ increase ≥100 mL	Pre-BD FEV ₁ increase ≥100 mL	Pre-BD FEV ₁ pp >80% <i>OR</i> Pre-BD FEV ₁ >20% from baseline	Not included	Not included	Post-BD FEV ₁ pp ≥80%
s i	No exacerbations; no OCS ^c) ✓	\checkmark	\checkmark	\checkmark	√d	\checkmark	\checkmark	\checkmark
	Prevalence of clinical remission	31.7%	36.4%	14.5%	28.7%	12.7%	37%	35%	19%

^aSustained absence of significant asthma symptoms based on validated instrument; ^bThere should be agreement between the HCP and patient regarding symptom improvement and remission; ^cNo OCS use for exacerbations *OR* long-term disease control; ^dIn this analysis, exacerbations and OCS use were individually evaluated ACQ:Asthma Control Questionnaire; ACT, Asthma Control Test; BD, bronchodilator; FEV₁, forced expiratory volume in 1 second; HCP, healthcare provider; OCS, oral corticosteroid; OLE, open-label extension; pp, percent predicted

1. Pavord ID, et al. Poster presented at ACAAI, November 4–8, 2021, New Orleans, LA, USA; 2. Pavord ID, et al. Poster presented at ASCIA, August 30–September 2, 2022, Melbourne, Australia; 3. Menzies-Gow A, et al. Adv Ther 2022;39:2065– 2084; 4. Harrison T, et al. Presented at ATS International Conference, May 13–18, 2022, San Francisco, CA, USA. Poster 625; 5. Castro M, et al. Poster presented at ERS, September 4–6, 2022, Barcelona, Spain; 6. Ribas DC et al. Drugs 2021;81(15):1763-1774. 7. Chipps, B et al. JACI 2022;149:Suppl AB147 8. Hansen S et al ERJ 2022;60:3553 Do Not Distribute

Novel Asthma Therapies

- Depemokimab long acting anti I-L5
- Dexpramipexole depletes eosinophils
- Anti IL-33 itepekimab, astegolimab, tozorakimab
- OX40; OX40L
- JAKi; Oral and inhaled
- Anti IL-17
- Anti IL-6
- Anti M1
- Anti Gata3 DNAzyme
- TLR9 agonists
- CRTH2 antagonists
- Anti IL-13 lebrikizumab, tralokinumab failed phase 3
- Antibiotics
- Vitamin D

Key Points Summary

- Asthma is a highly prevalent condition with a high disease burden
- Severe asthma accounts for disproportionate amount of asthma cost to society
- Several subtypes of asthma exist:
 - Type 2 or T2 High, characterized by eosinophilic and/or allergic inflammation
 - Non Type 2 or T2 Low, characterized by neutrophilic or paucigranulocytic inflammation
 - Mixed (eosinophilic and neutrophilic), with features of both
- Need better biomarkers for response to therapy
- Current biologics for T2 high disease with best data for Tezspire for T2 low Do Not Distribute

Questions?

Do Not Distribute