Radiologic evaluation of pulmonary NTM infection

Disclosures

None

Learning Objectives

- Identify the imaging features of pulmonary NTM infection on CT and X-ray
- Understand radiological phenotypes of pulmonary NTM infection
- Understand the role of PET/CT in NTM

Overview

- I. CT technique
- II. NTM imaging signs
- III. Radiological/Clinical Phenotypes
- IV. NTM & Underlying Lung Disease

CT Technique

"Regular" CT - Spiral & Volumetric

- Quick One breath hold (10-30 sec)
- Reconstruct in: Any plane, Any thickness, 3D

Spiral/Volumetric Reconstruction

CT Technique

Low Dose

- ~ 1/3 to 1/5 Dose (smaller patients need less dose)
- "Noisy" but often Still Diagnostic Quality

Regular Dose - Initial CT

Low Dose - Follow-Up

At NJH we "automatically" use low dose for:

- NTM Follow-Up
- · Pulm. Nodule Follow-Up
- Lung Cancer Screening

CT Technique

HRCT (1 mm) THIN

- 1) End Expiration (for Air Trapping)
- 2) Prone (Mild Pulm. Fibrosis)

- When to order? (examples)
 - Possible HP / Hot Tub Lung!
 - Mild interstitial disease / fibrosis

CT Technique

- · Contrast?
 - Usually not needed for LUNG

- · Use for "Soft Tissue"
 - Mediastinum/Hila?
 - Pleura/Chest Wall?

TB - Note Necrotic "Non-enhancing" LN

Empyema - Enhancing Plural Rind

NTM Imaging Signs

- Tree-In-Bud and Centilobular Nodules
- Bronchiectasis
- Cavities
- Ground-Glass and Consolidation
- Atelectasis

Centrilobular Nodules and Tree-In-Bud

Bronchiectasis

Chest X-ray "Tram-Track" lines and Rings
HARD TO SEE ON X-RAY

Bronchiectasis

Bronchiectasis

Bronchiectasis

figures from chestmedicine.org

Cavities - and "feeding bronchus" sign

• Kim et al AJR 2005; 184:1247-1252

Cavities - and "feeding bronchus" sign

1252

Cavities

CAN BE HARD TO SEE ON X-RAY

Cavities

Consolidation and Ground-Glass

Atelectasis

Atelectasis

Atelectasis

Pt. had surgery to remove RML and Lingula

Aside: NTM with Normal CXR

Overview

- I. CT technique
- II. NTM imaging signs
- III. Radiological/Clinical Phenotypes
- IV. NTM & Underlying Lung Disease

Radiological/Clinical Phenotypes of NTM

- I. Nodular Bronchiectatic Type
- **II. Fibrocavitary Type**

III. Hot Tub Lung (Hypersensitivity Pneumonitis)

Chest X-ray often much more subtle

- Follow-Up Look for active disease
 - Tree-in-bud, consolidation
 - look for stability, (& clinical)
 - Bronchiectasis, Cavities

CASE 3 - More Severe

- Bronchiectasis
 Progression
- Cavity formation

CASE 4 – Focal Solitary Nodule

- · Uncommon.
- Must still rule out other causes of nodule (i.e neoplasm)

CASE 5 - Focal Solitary "Cavity"

CASE 2 - Severe upper lobe cavitary dz.

III. Hot Tub Lung(Hypersensitivity Pneumonitis)

- Air-trapping is very often present (HRCT helpful!)
- Normal CXR in 20+%

Overview

- I. CT technique
- II. NTM imaging signs
- III. Radiological/Clinical Phenotypes
- IV. NTM & Underlying Lung Disease

NTM & Underlying Lung Disease Risk factors for pulmonary NTM

- Often underlying lung disease
 - Structural
 - Non-structural
- Radiology also has role also in underlying disease

NTM in COPD/Emphysema

 Any cavity can "spill" contents leading to worsening disease in lower lung.

NTM in Chronic Aspiration

Nothing Specific with known NTM

- Migratory Ground-Glass/Consolidation <u>most</u> suggestive
- Location? Anywhere, but:
 - lower-posterior most common.
 - <u>unilateral sided sleeper?</u>
 - upper gardening, yoga, cough?

NTM in Chronic Aspiration

Aspiration Work-up

- 1. Esophogram
 - Also evaluates dysmotility
 - Only 2 min intermittent for GERD
- 2. Tailored Barium Swallow with Speech Pathology
 - Oral motility issues
 - 3. Esophageal pH testing

NTM in Chronic Aspiration

Aspiration on Esophogram

Aspiration Work-up

- 1. Esophogram
 - Also evaluates dysmotility
 - Only 2 min intermittent for GERD
- 2. Tailored Barium Swallow with Speech Pathology
 - Oral motility issues
 - 3. Esophageal pH testing

NTM in Adult CF - Case 1

NTM in Adult CF – Case 2

NTM in Alpha 1 Antitrypsin

NTM in Pulmonary Fibrosis (Scleroderma ILD)

NTM in Pulmonary Fibrosis (Scleroderma ILD)

PET/CT and NTM_

- NTM will cause increased uptake (like most infections)
- SUV typically about 8.5 (4.4-9.7)
- So <u>caution</u> in evaluating for cancer with NTM

- Hahm et al. Lung. 2010 Jan-Feb;188(1):25-31
- Treglia et al. J Comput Assist Tomogr. 2011;35(3):387-93.

Lung Cancer with NTM

References

- Ketai L, Currie B, Holt M, Chan E. Radiology of Chronic Cavitary Infections. *JTI*. 2018; 33(5):334-343.
- Martinez S, McAdams HP, Batchu CS. The many faces of pulmonary nontuberculous mycobacterial infection. *AJR Am J Roentgenol*. 2007;189(1):177-186.
- Ellis SM. The spectrum of tuberculosis and non-tuberculous mycobacterial infection. *Eur Radiol*. 2004;14 Suppl 3(3):E34-E42.
- Ellis SM, Hansell DM. Imaging of Non-tuberculous (Atypical) Mycobacterial Pulmonary Infection. *Clin Radiol*. 2002;57(8):661-669.
- Jeong YJ, Lee KS, Koh W-J, Han J, Kim TS, Kwon OJ. Nontuberculous mycobacterial pulmonary infection in immunocompetent patients: comparison of thin-section CT and histopathologic findings. *Radiology*. 2004;231(3):880-886.
- Wittram C, Weisbrod GL. Mycobacterium avium complex lung disease in immunocompetent patients: radiography-CT correlation. *BJR*. 2002;75(892):340-344.
- Erasmus JJ, McAdams HP, Farrell MA, Patz EF. Pulmonary nontuberculous mycobacterial infection: radiologic manifestations. *RadioGraphics*. 1999;19(6):1487-1505.
- Musaddaq B, Cleverley JR. Diagnosis of non-tuberculous mycobacterial pulmonary disease (NTM-PD): modern challenges. *BJR*. 2020; 93: 20190768