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CLINICAL QUESTION 

It is currently unclear how to interpret genomic comparisons of Mycobacterium abscessus 
isolates between patients to infer transmission. This study provides a baseline for genomic 
comparisons by analyzing M. abscessus isolates from a well-characterized hospital associated 
outbreak, including environmental isolates from the suspected point source and clinical isolates 
collected during the outbreak period.   
 

SUMMARY 

Background: Acquisition of M. abscessus is generally thought to occur through independent 
exposure to soil, air, or water 1-3. Recent studies using whole genome sequencing (WGS) to 
examine clinical M. abscessus isolate populations have challenged traditional hypotheses on 
transmission. For example, genomic studies of M. abscessus isolates from people with cystic 
fibrosis (CF) identified clones across Europe, Australia, and the US that differed by fewer than 20 
single-nucleotide polymorphisms (SNPs) in their core genomes 4-6. Some investigators have 
concluded that acquisition of M. abscessus likely occurs through person-to-person transmission 
4,7. However, other studies with WGS and epidemiologic analyses of M. abscessus determined 
that SNP thresholds do not accurately predict transmission and that healthcare associated 
transmission of M. abscessus between patients is rare (in 3-10% of subjects studied) 8-12. Each of 
the preceding studies did not include genomic analyses of environmental M. abscessus isolates 
for comparison. 

Authors of this study previously investigated a large, biphasic outbreak that occurred from 2013 
to 2015 at Duke University Hospital in North Carolina (NC) 13. This outbreak affected over 100 
patients, including lung transplant recipients and cardiac surgery patients, and was 
epidemiologically linked to a new-hospital-addition water system colonized with M. abscessus. 
Interventions designed to prevent hospital tap water contact mitigated the outbreak, and 
incidence rates of hospital-associated M. abscessus acquisition returned to baseline 13,14.  

During the outbreak investigation, genetic screening with non-WGS fingerprinting methods 
revealed that over 75% of patient isolates and all environmental isolates represented a specific 
clone of M. abscessus subsp. abscessus. In the current study, a subset of isolates collected during 
this outbreak were analyzed by WGS with the hypothesis that core and accessory genome 
analyses would improve interpretation of genetic distances between M. abscessus isolates and 
understanding of M. abscessus acquisition.  
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Methods and Results:  
1. Description of Study Isolates (Table 1): A total of 26 isolates with specific non-WGS genetic 

fingerprints (inclusion criteria) were analyzed including environmental (n=4) and clinical 
isolates (n=7) from phase 1 or phase 2 of the outbreak, outbreak hospital clinical isolates 
collected before and after the outbreak period (n=4), regional clinical isolates from a 
neighboring hospital (n=2), and clinical isolates obtained from outside laboratories (n=9).   

2. Hypothesis #1 (Figure 1): Isolates with similar non-WGS genetic fingerprints will cluster 
together by phylogenomics. Study isolates (n=26) with genetic inclusion criteria were 
compared to isolates without genetic inclusion criteria (n=22). Study isolates clustered 
together and were distinct from isolates without the criteria supporting the hypothesis.  

3. Hypothesis #2 (Figure 2): Outbreak hospital patients within the outbreak period acquired 
M. abscessus from the same source as environmental isolates. No significant differences in 
genome-wide SNP distances (Figure 2A) or % accessory genes (Figure 2B) were observed 
between environmental and ‘within outbreak’ isolate groups supporting the hypothesis. 

4. Hypothesis #3 (Figure 2):  Outbreak strains predated or remained in the geographic region 
after the outbreak period. Significant differences in SNP distances and % accessory genes 
were observed between environmental and pre/post isolate groups. These data partially 
support the hypothesis, and also reveal genetic drift in a clonal population over time.  

5. Hypothesis #4 (Figure 2): Control isolates from a neighboring hospital and remote outside 
laboratories have genome-wide SNP distances similar to those of outbreak isolates as 
predicted by non-WGS genetic fingerprinting methods. A wide range of genetic distances 
were observed among control isolates compared to environmental outbreak isolates 
suggesting that non-WGS fingerprinting methods do not fully reflect genomic distances.  

6. Hypothesis #5 (Figures 2 and 3): Accessory genome comparisons provide additional 
information about isolate relatedness beyond SNP thresholds. Integrated analyses of % 
accessory genes (gene content variation) and SNP distances (Figure 2C) provided a refined 
method for identifying 90% of clinical isolates associated with the outbreak.  

 
Conclusions: 

 Non-WGS genetic fingerprinting methods are a good screening tool to identify genetically 
related isolates during an outbreak investigation.  

 Genomic comparisons provided a higher resolution evaluation of isolate relatedness in 
terms of recent acquisition compared to non-WGS methods.  

 Genome-wide SNP distances alone did not clearly differentiate the mechanism of 
acquisition of outbreak versus non-outbreak isolates. 

 However, integrated analyses of genome-wide SNPs distances and shared accessory genes 
identified 90% of outbreak isolates.   

 Successful investigation of M. abscessus clusters requires molecular and epidemiologic 
components, ideally complemented by environmental sampling. 
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Remaining questions:  

 Genetically similar M. abscessus isolates have been observed among patients from 
geographically disparate regions, between CF and non-CF patients, and in situations with 
limited evidence of transmission. The mechanism(s) of spread remain unclear. 

 Analysis of longitudinally-sampled M. abscessus isolates from patients over time show 
clonality and genetic stability. However, it is unknown if this stability also occurs among 
M. abscessus isolates from environmental sources.    

 This study confirms the source of M. abscessus as water exposure, but there are few 
recent examples of M. abscessus isolated from the environment. Future environmental 
studies are needed to fully understand exposure risks to vulnerable patient groups.   

 

GROUP OPINION 

WGS has revolutionized the way researchers study pathogen populations and investigate 
potential outbreaks. Each bacterial species has its own population structure, lifestyle, and 
environmental niche that should be considered when interpreting genomic comparisons. As with 
any new method, there is a lag in fully understanding the results and implications for clinical care. 
The WGS-enabled discovery of M. abscessus dominant clones in disparate regions of the world is 
an extraordinary finding. However, hypotheses that challenge paradigms should be accompanied 
by rigorous testing of previously held dogma. In this study, genome-wide SNP distances alone 
were unable to differentiate hospital plumbing M. abscessus acquisition from interhuman 
transmission, neighboring hospital acquisition, or remote community acquisition. Use of genomic 
comparisons combined with systematic epidemiologic analyses provide the best opportunity for 
timely investigation of outbreak clusters and successful interventions. 

Summary Statement: Genome sequencing has allowed scientists to identify dominant strains of 
M. abscessus in many regions of the world and clusters of similar strains within healthcare 
centers. However, epidemiological investigations have shown that healthcare settings are an 
unlikely source for acquisition of M. abscessus. Ecological studies are needed to get a better 
understanding of where M. abscessus occurs in the environment to help minimize exposures for 
at-risk patients.     
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