#### **NTM Lecture Series for Patients**

April 29, 2023
NATIONAL JEWISH HEALTH

## Overview of GERD

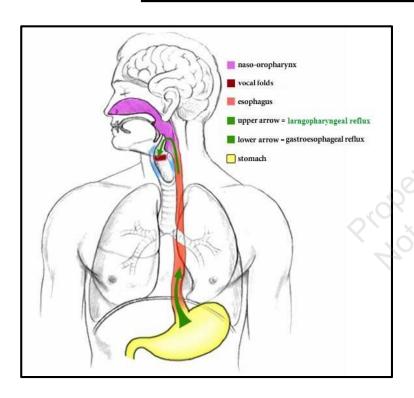
Associate Professor, Department of Medicine Chief, Division of Gastroenterology Medical Director, GI Procedures Unit

## <u>Disclosures</u>

• I have no financial disclosures

 The off-label use of the medications baclofen and bethanechol will be discussed in this talk

#### **Learning Objectives**

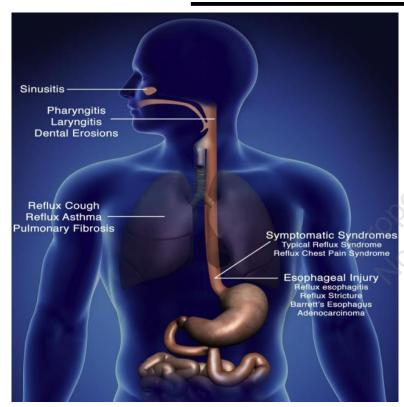

- I. Understand how GERD may effect NTM pulmonary disease
- II. Understand options for reflux testing
- III. Understand how reflux management may differ when trying to prevent aspiration

## <u>Outline</u>

- I. Relationship Between GI Tract and Lungs
- II. GERD and NTM
- III. Reflux Testing
- IV. Treatment of Reflux

## Relationship Between GI Tract and Lungs

#### Location, Location, Location



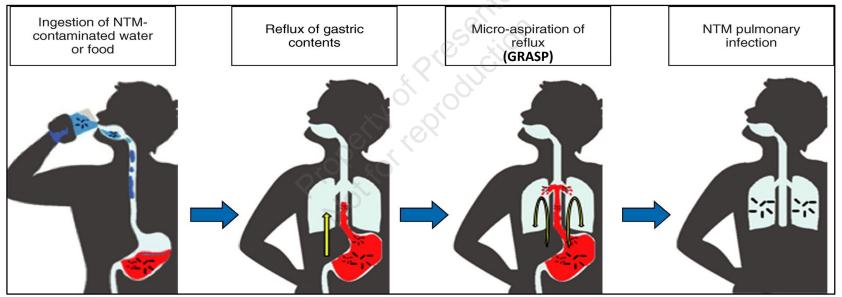

- GERD (Gastroesophageal Reflux Disease): symptoms or complications resulting from the reflux of gastric contents into the esophagus or beyond, including the oral cavity and/or lungs
- <u>Laryngopharyngeal Reflux (LPR):</u> retrograde movement of gastric contents into the larynx, pharynx, and upper aerodigestive tract
- Aspiration: entry of material from the oropharynx or GI tract into the larynx and lower respiratory tract (antegrade or retrograde)
- GI-Related Aspiration (GRASP): aspiration of material originating distal to the upper esophageal sphincter (retrograde only)

#### How Common is GERD?

- 60% of adults experience reflux symptoms over a 12 month period
- 30-40% had reflux symptoms in the last month
- 20-30% have weekly symptoms
- 10% have symptoms ≥ twice weekly

#### Manifestations of GERD




Laryngitis and sinusitis Dysphonia Chronic cough **Bronchitis** Cystic fibrosis Asthma COPD Bronchiolitis Bronchiolitis obliterans Ground-glass opacities Bronchiectasis Organising pneumonia Community-acquired pneumonia Aspiration pneumonia

Best Pract Res Clin Gastroenterol. 2013 Jun;57(3):415-31.

ERJ Open Res. 2020; 6: 00190-2019.

#### How Does GERD Relate to NTM?

NTM are ubiquitous environmental organisms



Am J Respir Crit Care Med. 2020 Aug; 202(3):466-469.

In the proper host setting, this may cause chronic infection

| Controls (MAC-)*      |           |           |                     |  |  |  |
|-----------------------|-----------|-----------|---------------------|--|--|--|
|                       | x4 010    |           | p Value             |  |  |  |
| Variables             | MAC+      | MAC-      | (Fisher Exact Test) |  |  |  |
| GERD                  | 25 (43.1) | 16 (27.6) | < 0.0001            |  |  |  |
| Antacids              | 4 (6.9)   | 14 (24.1) | 0.038               |  |  |  |
| H2RAs                 | 15 (25.9) | 6 (10.3)  | 0.013               |  |  |  |
| Proton-pump inhibitor | 12 (20.7) | 7(12.1)   | 0.127               |  |  |  |
| Prokinetic agents     | 4 (6.9)   | 0         | 0.039               |  |  |  |
| Any acid suppression  | 27 (56.3) | 26 (44.8) | 0.165               |  |  |  |

Chest. 2007 Apr;131(4):1166-72.

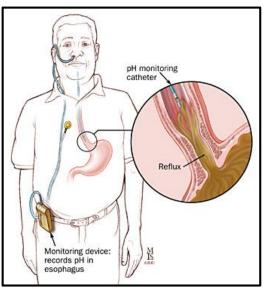
Table 3—Demographic Characteristics of GERD-Positive and GERD-Negative Patients With the Nodular Bronchiectatic Form of NTM Lung Disease\*

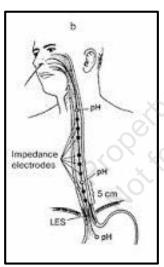
| Characteristics                      | GERD Positive (n = 15)                                                | GERD Negative (n = 43) | p Value |  |  |
|--------------------------------------|-----------------------------------------------------------------------|------------------------|---------|--|--|
| Age, yr                              | 56 (43–63.5)                                                          | 57 (53–66.5)           | 0.320   |  |  |
| Female gender                        | 13 (87)                                                               | 37 (86)                | 1.000   |  |  |
| Body mass index, kg/m <sup>2</sup>   | 20.0 (18.6–21.7)                                                      | 20.6 (19.5–22.2)       | 0.316   |  |  |
| Smoking status                       |                                                                       |                        |         |  |  |
| Non-smoker                           | 14 (93)                                                               | 40 (93)                | 1.000   |  |  |
| Ex-smoker                            | 1(7)                                                                  | 3 (7)                  |         |  |  |
| Etiology                             |                                                                       |                        |         |  |  |
| M avium complex                      | 5 (33)                                                                | 22 (51)                | 0.368   |  |  |
| M abscessus                          | 10 (67)                                                               | 21 (49)                |         |  |  |
| AFB smear positive                   | 12 (80)                                                               | 19 (44)                | 0.033   |  |  |
| Involved lobes on HRCT, No.          | $\langle \rangle \setminus \langle \rangle \setminus \langle \rangle$ |                        |         |  |  |
| Bronchiectasis                       | 4 (3–4)                                                               | 2 (2-3)                | 0.008   |  |  |
| Bronchiolitis                        | 4 (3–5)                                                               | 2 (2-4)                | 0.005   |  |  |
| Pulmonary function tests             |                                                                       |                        |         |  |  |
| FVC, % of predicted                  | 93.0 (83.0–102.0)                                                     | 87.0 (77.5–93.5)       | 0.170   |  |  |
| FEV <sub>1</sub> , % of predicted    | 92.5 (76.5–107.0)                                                     | 88.0 (72.5–102.0)      | 0.508   |  |  |
| FEV <sub>1</sub> /FVC, ratio         | 76.0 (67.0–84.0)                                                      | 74.0 (71.0–80.0)       | 0.880   |  |  |
| Peak expiratory flow, % of predicted | 92.0 (80.0–111.5)                                                     | 96.0 (74.5–99.0)       | 0.748   |  |  |

<sup>\*</sup>Data are presented as the median (interquartile range) or No. (%). Bronchiolitis was defined as the presence of small centrilobular nodules (< 10 mm in diameter) or branching nodular structures (tree-in-bud pattern) on HRCT.

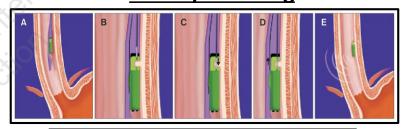
Chest. 2007 Jun;131(6):1825-30.

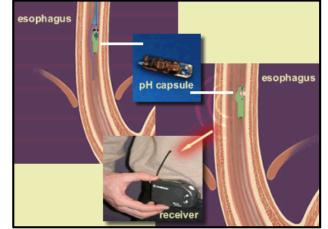
- U.S. Bronchiectasis Research Registry
- 1,826 patients with bronchiectasis
- 63% had history of NTM
- GERD: 51% NTM patients, 40% no NTM


## How Do We Detect/Measure GRASP?


- WE CAN'T!!!
- What can we measure?
  - Gastroesophageal reflux
  - Esophageal motility
  - Stomach motility
  - Sputum cultures
  - Lung inflammation/damage
  - Lung function
- There are no agreed-upon criteria for diagnosing GRASP
- Current testing may tell us how at-risk or not at-risk a patient is for GRASP

# Reflux Testing


## Reflux Testing


#### **pH-Impedance Testing**





#### **Bravo pH Testing**





#### pH-Impedance vs. Bravo

|                    | pH-Impedance   | Bravo     |
|--------------------|----------------|-----------|
| Time               | 22-24 hrs      | 48-96 hrs |
| Where in Esophagus | Top and bottom | Bottom    |
| Discomfort         | Yes            | Minimal   |
| Detects Acid       | Yes            | Yes       |
| Detects Non-acid   | Yes            | No        |

## Treatment of Reflux

#### How Can We Reduce Reflux?

1. Lifestyle modifications

2. Medications

3. Antireflux procedures

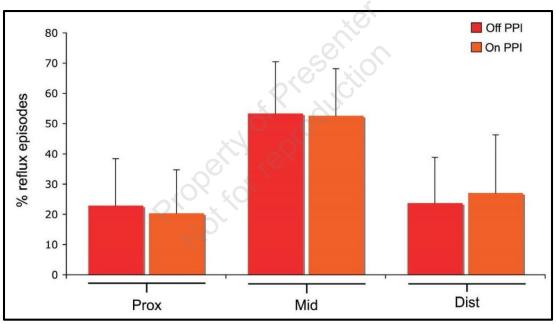
#### Lifestyle Modifications for GERD

| Table 3. Efficacy of lifestyle interventions for GERD                                                  |                                                              |                                   |                                                                                                                                                                                                   |  |  |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Lifestyle<br>intervention                                                                              | Effect of inter-<br>vention on GERD<br>parameters            | Sources<br>of data                | Recommendation                                                                                                                                                                                    |  |  |
| Weight loss<br>(46,47,48)                                                                              | Improvement of<br>GERD symptoms<br>and esophageal<br>pH      | Case-Control                      | Strong recommenda-<br>tion for patients with<br>BMI>25 or patients<br>with recent weight<br>gain                                                                                                  |  |  |
| Head of bed<br>elevation<br>(50–52)                                                                    | Improved<br>esophageal pH<br>and symptoms                    | Randomized<br>Controlled<br>Trial | Head of bed eleva-<br>tion with foam wedge<br>or blocks in patients<br>with nocturnal GERD                                                                                                        |  |  |
| Avoidance of<br>late evening<br>meals<br>(180, 181)                                                    | Improved<br>nocturnal gastric<br>acidity but not<br>symptoms | Case-Control                      | Avoid eating meals<br>with high fat content<br>within 2–3h of<br>reclining                                                                                                                        |  |  |
| Tobacco and alcohol cessation (182–184)                                                                | No change in<br>symptoms or<br>esophageal pH                 | Case-Control                      | Not recommended<br>to improve GERD<br>symptoms                                                                                                                                                    |  |  |
| Cessation of<br>chocolate,<br>caffeine, spicy<br>foods, citrus,<br>carbonated<br>beverages             | No studies performed                                         | No evidence                       | Not routinely recom-<br>mended for GERD<br>patients. Selective<br>elimination could be<br>considered if patients<br>note correlation with<br>GERD symptoms and<br>improvement with<br>elimination |  |  |
| BMI, body mass index; GERD, gastroesophageal reflux disease.  Am J Gastroenterol. 2013 Feb;108:308-28. |                                                              |                                   |                                                                                                                                                                                                   |  |  |

# Management of Suspected Extraesophageal Reflux – AGA Recs

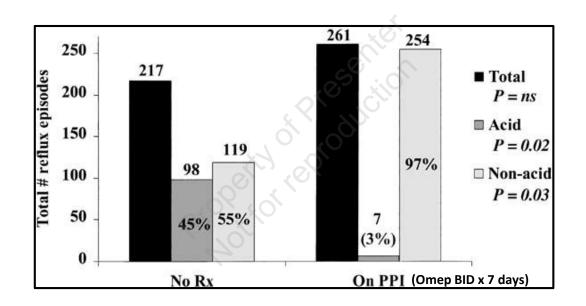
#### Grade B: recommended with fair evidence that it improves important outcomes

I. Acute or maintenance therapy with once- or twice-daily PPIs (or H<sub>2</sub>RAs) for patients with a suspected extraesophageal GERD syndrome (laryngitis, asthma) with a concomitant esophageal GERD syndrome.


#### Grade D: recommend against, fair evidence that it is ineffective or harms outweigh benefits

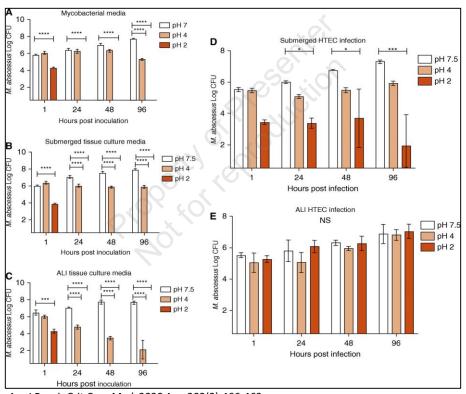
I. Once- or twice-daily PPIs (or H<sub>2</sub>RAs) for acute treatment of patients with potential extraesophageal GERD syndromes (laryngitis, asthma) in the absence of a concomitant esophageal GERD syndrome.

#### Grade Insuff: no recommendation, insufficient evidence to recommend for or against


 Once- or twice-daily PPIs for patients with suspected reflux cough syndrome.

#### Why Aren't Acid Reducers the Right Choice?

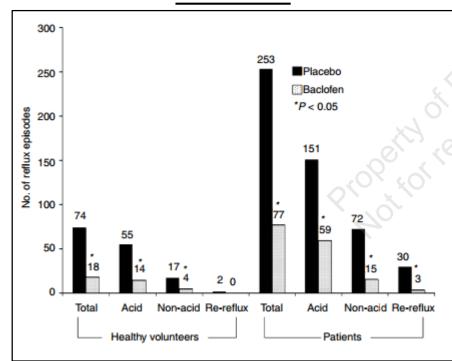



Am J Gastroenterol. 2008 Oct;103(10):2446-53.

#### Why Aren't Acid Reducers the Right Choice?



\*\* PPIs REDUCE ACID, NOT REFLUX \*\*


#### Can Acid Reducers Worsen NTM?



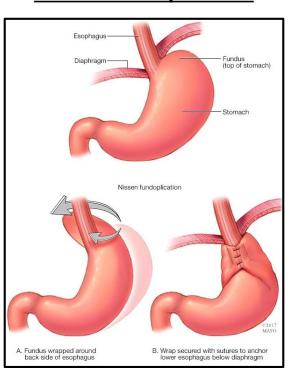
Am J Respir Crit Care Med. 2020 Aug;202(3):466-469.

#### Are There Medications That Reduce Reflux?

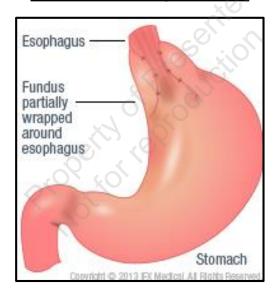
#### **Baclofen**



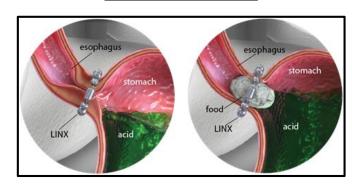
#### Aliment Pharmacol Ther. 2003 Jan;17(2):243-51.


#### **Bethanechol**

- Improves esophageal motility/clearance
- Increases LES pressures
- Anecdotal evidence of reducing reflux
- \*\* No reflux studies \*\*


Yale J Biol Med. 1999 Mar-Jun;72(2-3)173-80. J Clin Gastroenterol. 2007 Apr;41(4):366-70. Gut. 1999 Sep;45:346-54.

## **Antireflux Surgeries**


#### **Nissen Fundoplication**



#### **Partial Fundoplication**



#### **LINX Procedure**



#### Take Home Points

- The GI tract and airway are close together
- GRASP likely plays a role in NTM infection
- We cannot definitively diagnose GRASP
- Choose the proper reflux test and interpret properly
- Not all reflux is acid; acid reducers don't reduce reflux
- Lifestyle mods, meds, and surgery can reduce reflux

## Thank You



#### References

- 1) Am J Gastroenterol. 2013 Feb;108:308-28
- 2) Best Pract Res Clin Gastroenterol. 2013 Jun;57(3):415-31
- 3) ERJ Open Res. 2020; 6: 00190-2019
- 4) Am J Respir Crit Care Med. 2020 Aug;202(3):466-469
- *5) Chest*. 2007 Jun;131(6):1825-30
- 6) Chest. 2007 Apr;131(4):1166-72
- 7) Chest. 2017 May;151(5):982-992
- 8) Am J Gastroenterol. 2008 Oct;103(10):2446-53
- 9) Gastroenterology. 2008;135:1383-91
- 10) Gastroenterology. 2001 Jun;120(7):1599-1606
- 11) Aliment Pharmacol Ther. 2003 Jan;17(2):243-51
- 12) Yale J Biol Med. 1999 Mar-Jun;72(2-3)173-80
- *13) J Clin Gastroenterol*. 2007 Apr;41(4):366-70
- 14) Gut. 1999 Sep;45:346-54