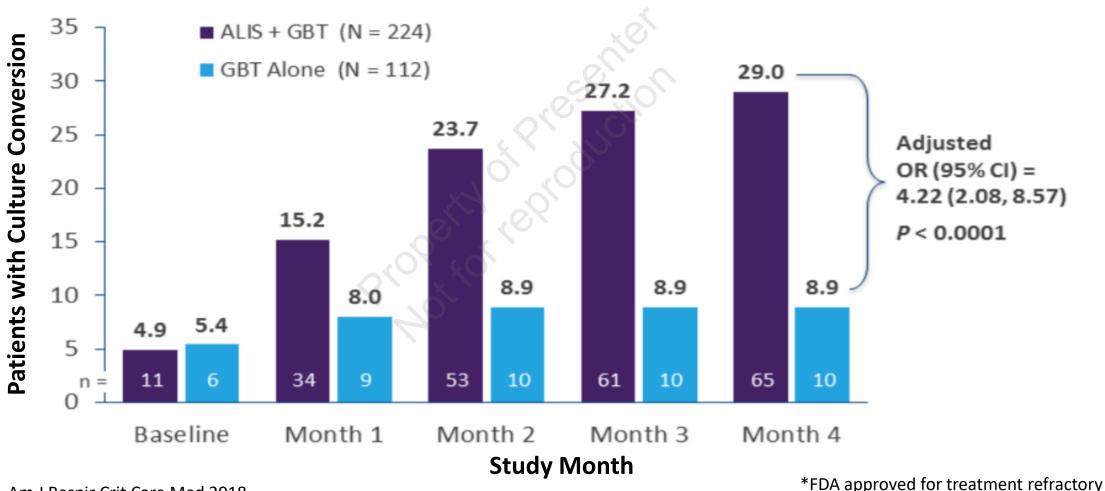

NTM Lecture Series for Providers

April 27-28, 2023 NATIONAL JEWISH HEALTH

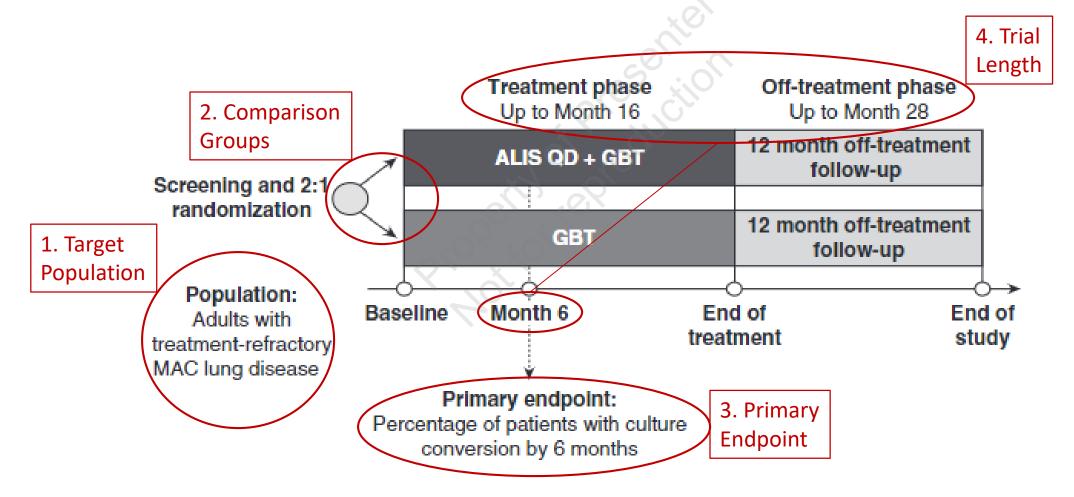
Novel Therapy in NTM Infections


Disclosures

- Pfizer AdBoard
- Mannkind Corporation AdBoard
- Spero Therapeutics AdBoard
- Paratek Pharma AdBoard
- AN2 Therapeutics AdBoard
- Beyond Air, Inc Cooperative Research and Development Agreement

^{*}Amikacin liposome inhalation suspension is the only FDA approved drug for treatment of pulmonary NTM disease *All other drugs discussed are either off-label use or investigational

^{*}Study results and design examples are all from published data or from listings on ClinicalTrials.gov


*Amikacin liposomal inhalation suspension: Phase 3

Griffith. Am J Respir Crit Care Med 2018

*FDA approved for treatment refractory *M. avium* complex lung disease

Anatomy of a NTM trial

FDA Workshop Development of Antibacterial Drugs for the Treatment of Nontuberculous Mycobacterial Disease April 8, 2019

GUIDANCE DOCUMENT

Nontuberculous Mycobacterial Pulmonary Disease Caused by Mycobacterium avium Complex: Developing Drugs for Treatment

Draft Guidance for Industry

SEPTEMBER 2021

https://www.fda.gov/media/152501/download

Development of Drugs for Nontuberculous Mycobacterial Disease

Clinicians' Interpretation of a US Food and Drug Administration Workshop

Patrick A. Flume, MD; David E. Griffith, MD; James D. Chalmers, MBChB, PhD; Charles L. Daley, MD; Kenneth Olivier, MD, MPH; Anne O'Donnell, MD; Timothy Aksamit, MD; Shannon Kasperbauer, MD; Amy Leitman, JD; and Kevin L. Winthrop, MD, MPH

CHEST 2021; 159(2):537-543

Target population heterogeneity

Disease Factors	Example	Example	
Underlying disease, comorbidity	CF vs non-CF	COPD vs non-COPD	
Radiographic features	Fibrocavitary vs nondular- bronchiectatic	Minimal (single lobe) vs extensive (multi-lobar)	
NTM treatment status	Naïve vs refractory	Naïve vs previously treated	
Pathogen and antimicrobial susceptibility	MAC vs <i>M. abscessus</i>	Macrolide, amikacin resistant vs susceptible	
Clinical end points, disease stage	Too "well" to detect change	Too "sick" to detect change	

Treatment refractory

Pro

- Can power study with patients taking stable background multi-drug regimen
- May be easier to attribute efficacy to study drug as placebo/GBT alone less likely to change

Treatment naïve

Pro

- Patients not as sick, easier to reverse
- Can consider monotherapy trial easier to attribute effect to study drug
- Larger pool of patients for enrollment

Con

- High bar for drug to reach
- Patients may have more advanced disease
 with reduced capacity to improve
- If background regimen continued, drugs may vary significantly

Con

- Hard to sort those likely to progress from likely to remain stable
- Higher likelihood of spontaneous conversion
- For Mac, most patients respond to GBT –
 larger #'s to see effect in drug substitution trial

Comparison groups/trial design

- Phase 2
 - Delay of standard therapy may be appropriate
 - Select patients
 - Adequate monitoring
 - Short-term, randomized, placebo-controlled, proof-of-concept study evaluating a single agent

Comparison groups/trial design

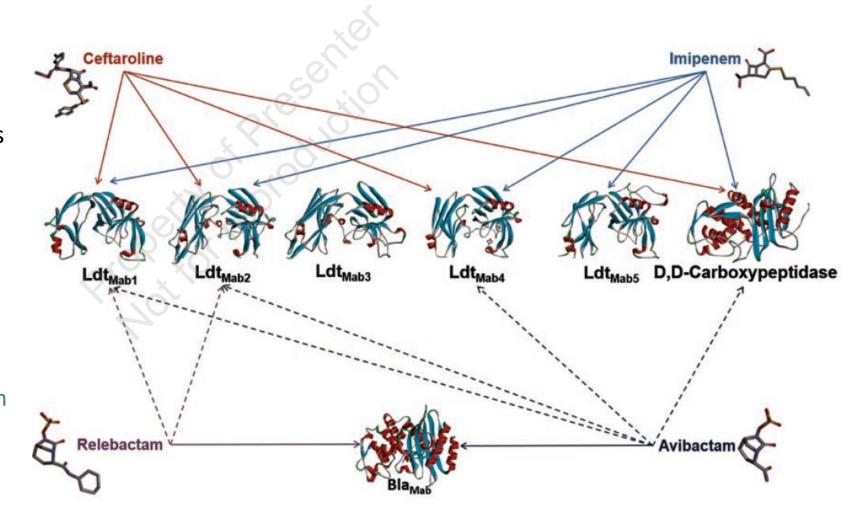
Phase 3

- Conduct 2 randomized, double-blind phase 3 trials
 - Single trial showing robust evidence of efficacy with confirmatory evidence may also demonstrate substantial evidence of effectiveness
- Trials should study test drug in combination with other antibacterial drugs
 - Superiority of [standard-of-care (SOC) regimen + new drug] vs. [SOC + placebo]
 - Superiority of [new combination regimen] vs. [SOC]
 - Justify contribution of each component to overall efficacy
 - Superiority of [new combination regimen] vs. [placebo] in treatment-naïve patients
 - Appropriate criteria for instituting rescue therapy
 - Justify contribution of each component to overall efficacy

Primary endpoint

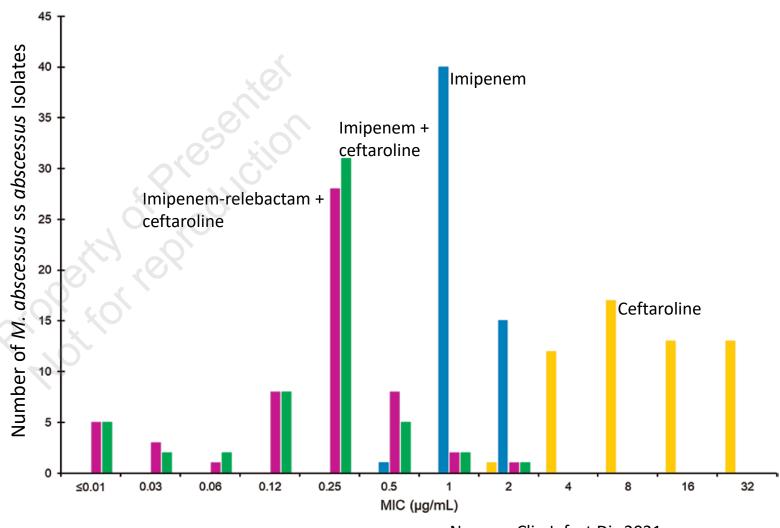
- Drugs will provide benefit on a <u>clinically meaningful</u> endpoint
 - Most patients have microbiologic response to therapy, but data correlating with patient-reported outcomes or functional improvement are lacking
 - New drugs must improve how patient
 - Feels
 - Functions
 - Survives
- If considering a <u>microbiologic outcome</u> as a surrogate likely to predict clinical benefit, *should discuss with the Division*.

Study length


- May be different for Phase 2 and Phase 3
- What is predictive of ultimate success, "cure"?
- Is culture conversion predictive of sustained negative cultures during and after therapy? Predictive of clinically meaningful endpoint?
- Surrogates for culture conversion, e.g. EBA, TTP?
- How long to see improvement in symptoms?
- How long do patients need to be followed after completion of therapy?

New regimens, available antibiotics

- Dual β-lactams
 - β-lactams have differing potencies vs specific Mabs transpeptidases
 - Ceftazidime plus either ceftaroline or imipenem
 - Imipenem-relebactam plus amoxicillin
- β-lactamase inhibitor combinations
 - "Non-β-lactam-based" β-lactamase inhibitors block Bla_{Mab}
 - Avibactam (available combined with ceftazidime)
 - Relebactam (available combined with imipenem-cilastatin)
 - Vaborbactam (available combined with meropenem)
- Omadacycline/Eravacycline


Dual beta lactams, newer Bla inhibitors

- Target redundancies
- L,D-transpeptidases used in peptidoglycan synthesis
 - Cephalosporins, carbapenems
- Chromosomally encoded, serine class A, Bla_{Mab}
 - Diazabicyclooctane inhibitors
 - Avibactam, relebactam, nacubactam, zidebactam

Dual beta lactams, newer Bla inhibitors

- Fixed concentration of ceftaroline to imipenem markedly lowered MICs
- Avibactam > relebactam modestly increased ceftaroline activity
- Case/Cleveland VA Synergy Testing
 - Robert Bonomo MD
 - Robert.Bonomo@va.gov
 - Khalid Dousa MD
 - kxd231@case.edu

Nguyen. Clin Infect Dis 2021 Dousa. Antimicrob Agents Chemother 2020

Omadacycline, eravacycline

		MIC (μg/ml)		
Isolate or MIC	M. abscessus subspecies	Tigecycline	Omadacycline	Eravacycline
MIC data MIC range MIC ₅₀ MIC ₉₀	ATCC 19977 & 28 drug resistant clinical isolates	0.5–4 1 2	0.5–4 1 2	0.125-2 0.5

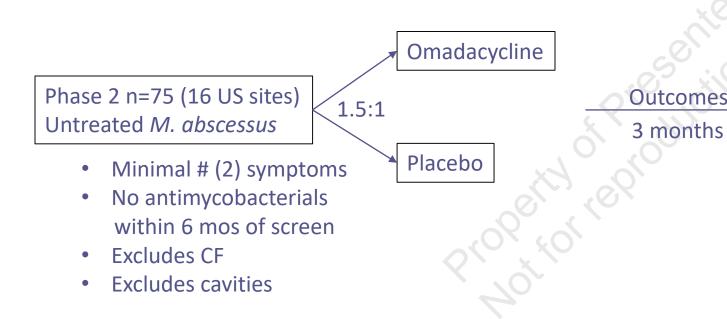
- MIC₅₀ & MIC₉₀ equivalent for tigecycline & omadacycline & 2-fold lower for eravacycline
- From hollow fiber, omadacyline 8-10x & eravacycline 2x higher free drug AUC/MIC ratios relative to tigecycline

Kaushik. Antimicrob Agents Chemother 2019

Pearson. Open Forum Infect Dis 2020 Morrisette. Open Forum Infect Dis 2021

Case series

- Single site, 4 patients 2 cutaneous, 1
 pulmonary, 1 osteomyelitis & bacteremia
 - Omadacyline median 5.5 mos + other drugs
 - Clinical cure 3/4 (75%) cases, other improving
 - 1 patient d/c at 6 months due to nausea
- Six sites, 12 patients 7 pulmonary, 2
 bone/joint, 3 other extrapulm sites
 - Omadacyline median 6.2 mos + other drugs
 - Clinical success in 9/12 (75%) cases
 - 1 GI symptoms, 1 ↑Cr, 1 AST/ALT >3x ULN


Oral Omadacycline vs. Placebo in Adults With NTM Pulmonary Disease Caused by *Mycobacterium abscessus*

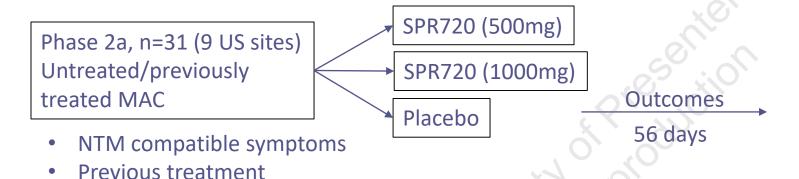
ClinicalTrials.gov Identifier: NCT04922554

- Phase 2, randomized (1.5:1), double blind, parallel group, placebo controlled
- Inclusion
 - ≥18 years, symptoms, CT evidence
 - Positive sputum 6mos prior and at screening
 - GBT Rx will not be needed for 3 mos
- Exclusion
 - Rx for Mac or Mabs within 6 mos
 - Any antibiotic within 4 weeks
 - CF
 - Extrapulmonary NTM
 - Prior omadacycline, reaction to tetracyclines

- 300mg daily vs placebo for 3 months
- 75 participants
- Primary outcomes
 - Improved on NTM symptom assessment scale
 - Adverse events
 - Lab tests, vital signs, EKG
- Secondary outcomes change from baseline
 - QoL-B, SGRQ, PROMIS 7a, etc.
 - Decrease in quantitative sputum
 - Time to positivity
 - Time to first negative culture

Oral Omadacycline vs. Placebo in Adults With NTM Pulmonary Disease Caused by *Mycobacterium abscessus*

- NTM Symptom Assessment
 Scale Improvement in at least
 50% of baseline symptoms
- Secondary:
 - 8 other PRO measures
 - Semi-quant culture scale
 - TTP
 - Time to 1st negative culture

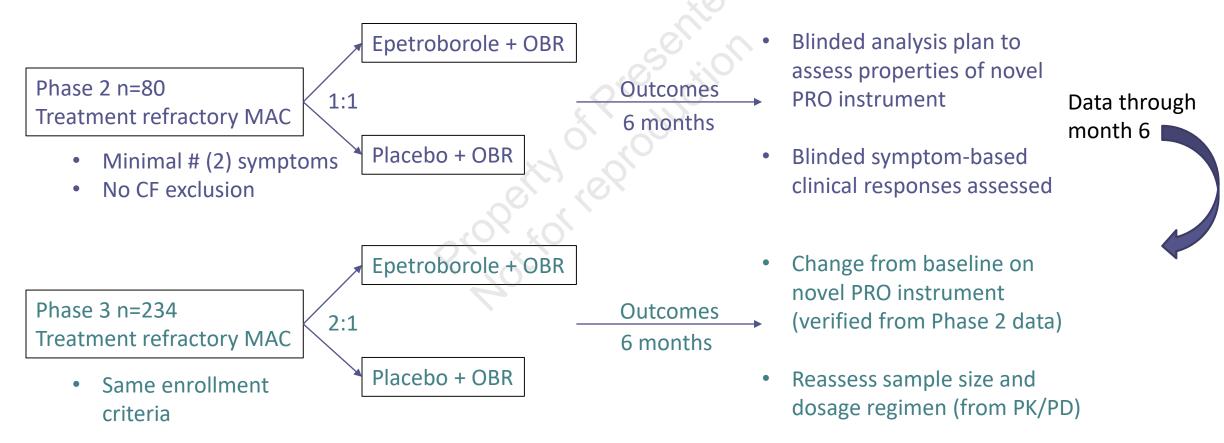

ClinicalTrials.gov Identifier: NCT04922554

New drugs, investigational antibiotics

- SPR720
 - Oral benzimidazole inhibitor bacterial DNA gyrase (GyrB)
 - Preclinical activity against M avium complex and M abscessus
- Epetraborole
 - Inhibitor of bacterial leucyl-tRNA synthetase
 - Preclinical activity against M avium complex and M abscessus
- Clofazimine inhalation suspension
 - Riminophenazine dye, exact mechanism unknown, binds mycobacterial
 DNA, inhibits energy metabolism

Brown-Elliott. Antimicrob Agents Chemother 2018 Kunkel. Antimicrob Agents Chemother 2023

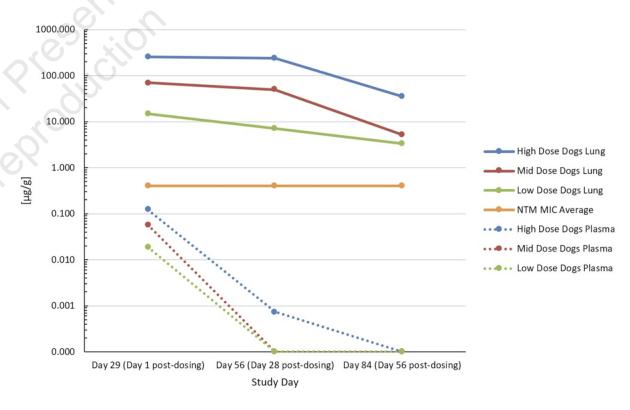
SPR720 Phase 2a, single agent for untreated MAC

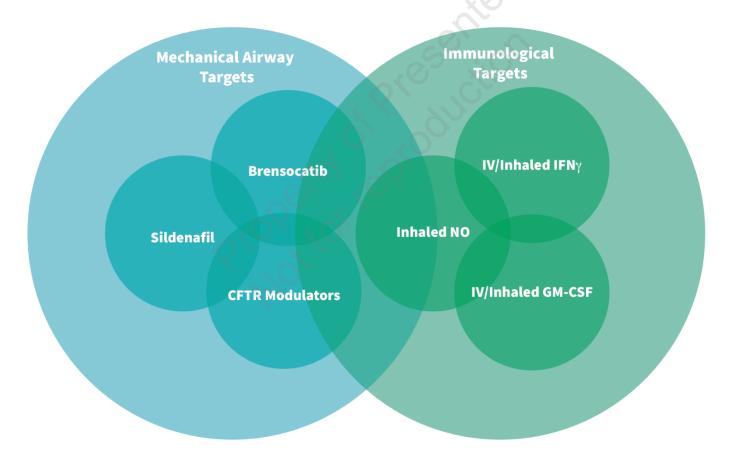

- Primary
 - Slope of weekly sputum Log10 CFU/mL (EBA)
- Secondary
 - 7 micro outcomes
 - 7 PRO outcomes
 - 5 PK measures
 - TEAE

Recent positive cultureOff Rx at least 3 mos

Successful treatment

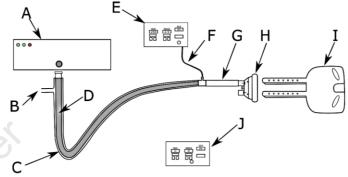
Epetraborole for Rx Refractory MAC

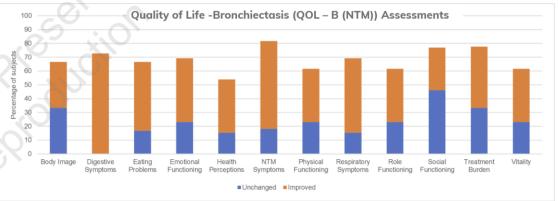

Adaptive Phase 2/3 design, pilot PRO in Phase 2

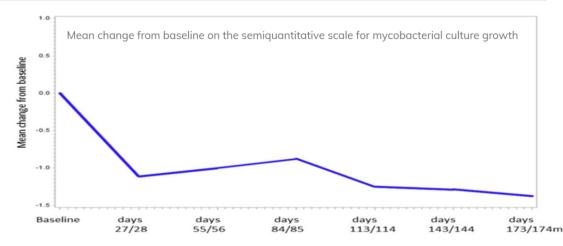

ClinicalTrials.gov Identifier: NCT05327803

Clofazimine inhalation suspension, preclinical

- Novel inhaled liposomal formulation
- Administered to dogs once daily for 28 days
 - Levels > MIC through 56 days after dosing
 - No demonstrable toxicity
- Good activity against MAC and Mabs in mice
- Adaptive Phase 2/3 clinical trial planned with 28-day dosing followed by 56 day "holiday"

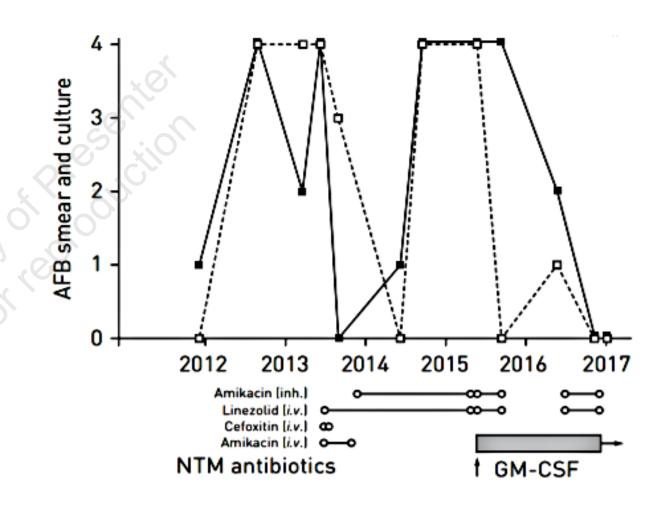


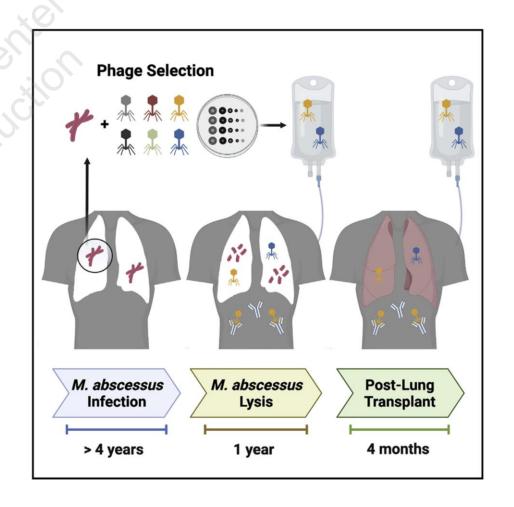

New therapies, host directed, non-drug approaches



Inhaled Nitric Oxide

- Pilot study of at-home generator-based system
- Target Rx refractory MAC or Mabs, CF/nonCF
- Outcomes
 - Primary TEAEs
 - Secondary
 - Culture conversion Day 174
 - Change in QoL
 - Change in FEV1, activity tracker, 6MWT
- Results (preliminary)
 - 15 enrolled (mean age 62, 22-82 years; F 75%)
 - Titrated to 250ppm in hospital, completed at home – compliance >90%/12weeks
 - No attributable SAEs




Inhaled GMCSF

- Inhaled rhGM-CSF targeting macrophage activation, ↑ intracellular killing
 - 2 CF pts M. abscessus Rx inhaled GM-CSF
 - Improved smear/culture status
 - Improved lung function
 - OPTIMA: Ph2 open, non-CF, persistent MAC/Mab,
 48wk/12wk f/u (Australia, UK)
 - ITT converted: MAC 5/24 (21%); Mab 0/8
 - 14 SAEs (1-TR); 3 deaths (0-TR)
 - ENCORE: Ph 2 open, CF, persistent MAC/Mab (US)
 - Enrollment closed due to COVID n=14/30

Phage treatment of M abscessus

- Treatment-refractory M.abscessus pulmonary infection eradicated in person with CF
- Specific mycobacteriophages lysed bacteria over course of a year
- Mabs did not acquire resistance to phages
- Mabs eradication occurred despite partial antiphage antibody response
- Enabled successful lung transplant

Summary

- Following approval of 1st drug for pulmonary NTM in 2018, there are now multiple novel therapies in the pipeline
- These therapeutic approaches include repurposing available drugs, investigational drugs, host directed therapies and other "non-drug"
- Obtaining better therapies for pulmonary NTM requires innovative, tailored clinical trial designs and, most importantly, patient participation

Acknowledgements (Evolving...)

UNC Bronchiectasis/NTM Care & Research Center

Clinical Team

Leigh Anne Daniels, MD, MPH – Clinic Director Kunal Patel, MD, PhD Kunal Jakharia, MD Karen Ellis, RN – Nurse Coordinator Priscilla Kitts, MSRC, RRT, RCP - Resp Clin Spec Morgan Jones, PharmD, BCACP, CPP - Clin Pharm Practitioner Edward Markus, RD – Dietician

Clinical Research Operations Team

Jackson Pettee, BA – Research Specialist
Caleb Hemphill, MS – Research Specialist
Kelsey Haywood, BS – Div PD/CCM Research Program Director

