Diagnosis of Latent Tuberculosis Infection

Michelle Haas, MD
Associate Professor of Medicine/Infectious Diseases
Division of Mycobacterial and Respiratory Infections, Department of Medicine
National Jewish Health

• I have nothing to disclose

Objectives

- Be able to define latent TB and differentiate this from active TB
- Understand identify risk factors for TB infection, and who should be offered testing for TB infection
- Be able to select testing for TB infection and how to interpret results
- Understand the pros and cons of the current tests for diagnosing LTBI

Clinical Scenario #1

- 24 y/o from Botswana
- QFT (+); HIV (-)
- Asymptomatic
- CXR right upper lobe fibrosis
- Is this LTBI?

Clinical Scenario #1: Follow-up

- Asymptomatic
- QFT (+); HIV (-)
- CXR right upper lobe fibrosis
- Sputum AFB x 3 negative by smear and culture
- Diagnosis: LTBI, not treated

2 years later...seen for a cough

Chest X-ray

Impression: Dense right upper lobe consolidation, suspected pneumonia. Follow-up x-rays recommended after antibiotic treatment

Prescribed azithromycin for pneumonia

3 weeks later ... seen at an urgent care

SARS-COV 2 negative

Diagnosed with pneumonia (no X-ray)

Prescribed doxycycline

Hospitalized 6 weeks after initial CXR

- <u>Impression</u>: Dense right upper lobe consolidation, suspected pneumonia. Follow-up x-rays recommended after antibiotic treatment
- <u>Findings:</u> Dense consolidation with 3.5 cm cavity without fluid level
- Eventually diagnosed with drugsusceptible cavitary pulmonary TB

Clinical Definition of Latent TB Infection (LTBI)

Laboratory criteria

A positive tuberculin skin test (TST)

OR

 A positive interferon-gamma release assay (IGRA)-QuantiFERON (QFT)

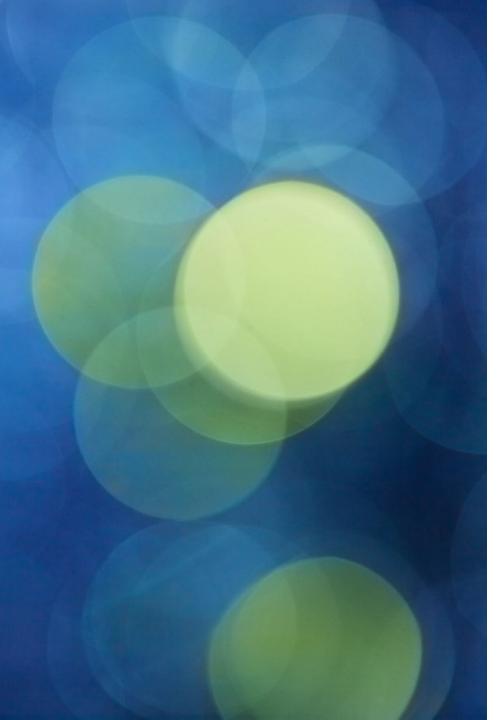
Clinical criteria

No signs or symptoms of active TB

AND

 Chest imaging without abnormalities OR abnormal imaging with negative microbiologic testing

Compare LTBI vs Active TB


Active TB Disease Latent TB Infection **TST** Positive Usually positive **IGRA** Usually positive Positive Culture Negative Positive (80%) Negative Positive or negative Sputum smear Infectious No Yes None Mild to severe **Symptoms** Preferred treatment Preventive therapy Multidrug therapy

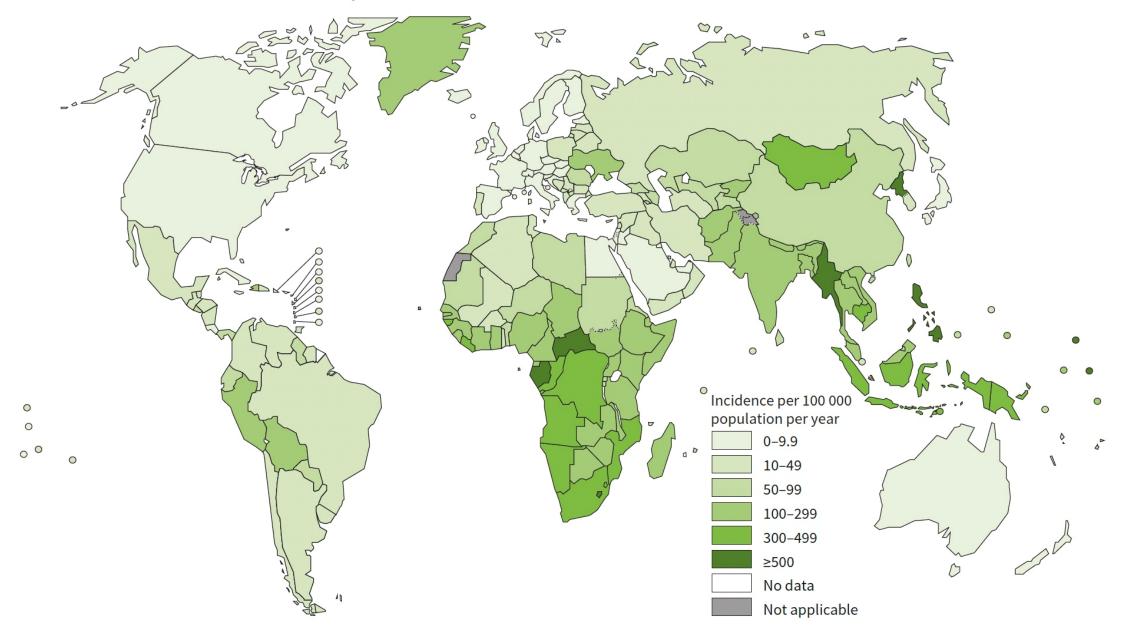
Are the bugs truly "sleeping".....?

Probably not a true binary "latent vs. active"----> SPECTRUM

Bacterial load? Symptoms Clinical disease Disease Bacterial replication **Active infection** maintained at a subclinical level by the immune system Infection controlled with some Quiescent infection bacteria persisting in nonreplicating form Infection eliminated in Acquired immune response association with T cell priming Infection eliminated without Innate immune response priming antigen-specific T cells

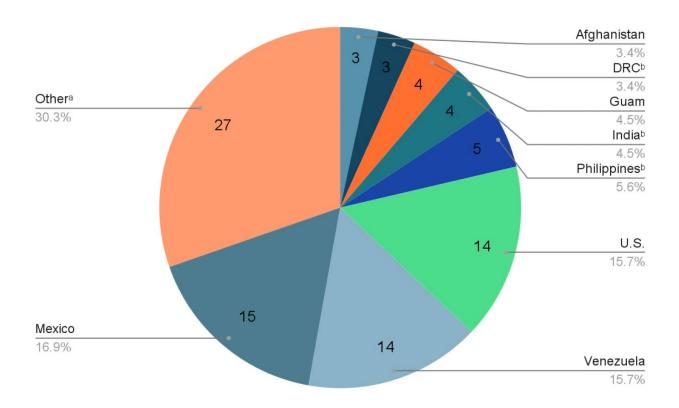
Barry C et al. Nature Reviews 2010 (modified)

Risk Factors for Tuberculosis and lifetime risk of disease after TB infection


Risk Factors

- Birth or travel to a high prevalence country
- Contact with an adult with active pulmonary TB

Lifetime Risk of TB disease after infection


- highest in initial 6 months but remains high for at least 2 years
- Adults 5-10% (50% in first three years)
 - Annual risk is 0.1% without other comorbid conditions
- Adolescents 15%
- Children (1 5 yr) 25%
- Children (< 1 yr) 40%

Estimated TB incidence rates, 2023

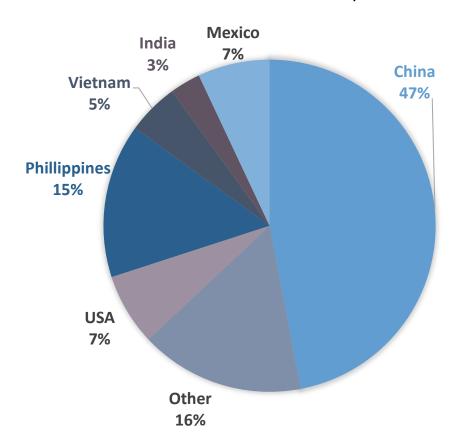

But look at what's happening in your own area.....

Figure 6. TB patients by country of birth: Colorado 2023

°Other countries: 1- Cambodia, 1- Central African Rep^b., 2- China^b, 1- Columbia, 1- El Salvador, 2- Ethiopia^b, 1- Guatemala, 2- Honduras, 2- Indonesia^b, 2- Rep of Korea, 1- Mali, 1- Myanmar^b, 2- Nepal, 2- Nicaragua, 1- Romania, 1- Rwanda, 1- Senegal, 1- Somalia, 2- Vietnam^b.

....compared to 2021 San Francisco, CA

South Africa: prevention priority populations: PWHIV, children <5 years

SW Denver: prevention priority populationscontacts, people who have lived in a TB endemic area, diabetes or immunocompromised

Goals of TB testing:

- identify people with TB infection and TB disease
- Prioritize people most at risk for testing (targeted universalism approach that preserves resources and equity)
- Balance of harm of missing TB against harm of treatment

Priority groups for testing for TB infection

Close contact to infectious (pulmonary) TB

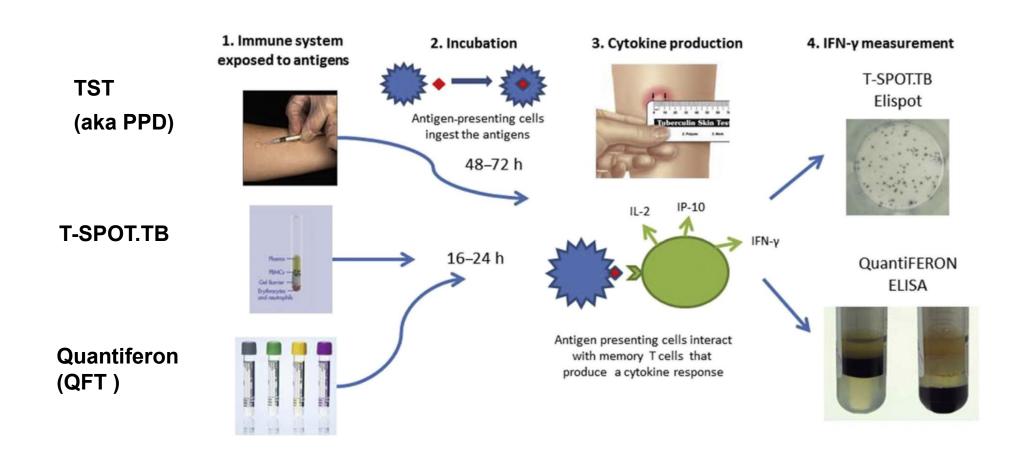
Lived (born or traveled > 1 month) to a country where TB is common

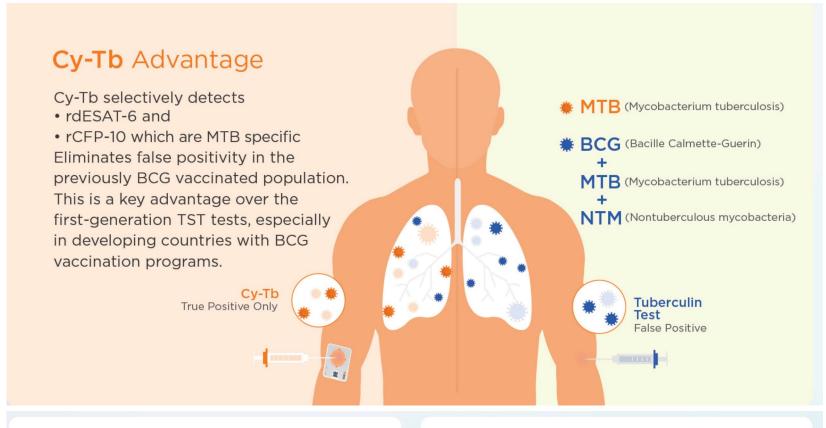
 Anywhere <u>but</u> United States, Canada, Australia, New Zealand, or Western and North Europe

Current or planned immunosuppression

• HIV, TNF-alpha blocker, transplant

Talking to patients about TB Screening


← Scary


← Still pretty scary

- First—check yourself—how are you showing up today for your patients?
- "We aim to provide you care that is inclusive of and respects your lived experience."
- "Based on places you've lived or visited previously, it would be beneficial to your health to screen you for TB."
- "This is considered part of routine preventative care"
- "Your BCG vaccine, like many others, only protects against severe forms of TB. Its protection decreases over time and after childhood"

Tests for TB infection

There is a new test for TB infection! (but we don't have it in the US)

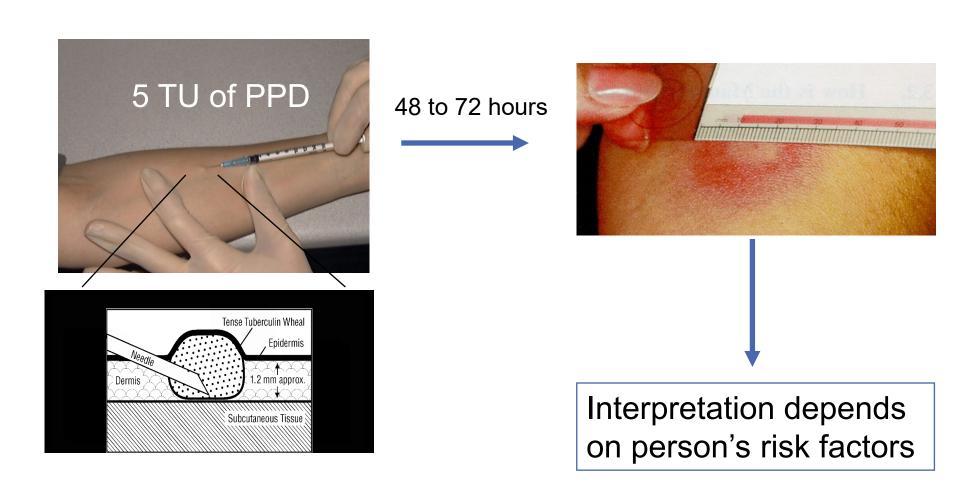
Method of Administration

Intradermal injection using mantoux technique

Interpretation

Induration of ≥ 5 mm indicates⊠atent infection

Unaffected by BCG Vaccination Status


Cy-Tb overcomes the problem of false positive in the previously BCG vaccinated Individuals

No Sample Handling

Unlike IGRA, no need for sample collection, transportation and testing in a controlled lab environment

Tuberculin Skin Testing Mantoux Method

Purified Protein Derivative (PPD)

- Generated by autoclaving in vitro grown M. tuberculosis at 100° C for two hours
- Chemical composition:
 - 93% proteins
 - 1% nucleic acid
 - 6% carbohydrate
- Proteomic analysis has shown significant overlap between M. avium and M. tuberculosis PPD

Criteria for a Positive TST Reaction

≥ 5mm	≥ 10mm	≥ 15mm
HIV infection	Recent immigrants	
Close Contacts	Children	No risk
Fibrotic CXR	Residents or employees in congregate settings	
Immunosuppression	Injection drug use	

Sensitivity Specificity

Stability of Reactions and Inter-reader Variability

- 1.Biologic variation from test to test in the same patient is very small, approximately 1mm.
 - Chaparas et al. ARRD 1985;132:175.
- 2. Same reader Standard deviations of 1.3-1.9 mm
 - Perez-Stable, et al. AJPH 1985;75:1341.
 - Erdtmann, et al. JAMA 1974;228:479.
- 3. Different readers Standard deviations of 2.3-2.5 mm
 - Furcolow et al. ARRD 1967;96:1009.

Tuberculin Skin Test

False negative tests

- Quality and stability of reagents
- Poor technique
- Anergy (eg.HIV positive, very young or old)
- Recent or remote TB infection

False positive tests

- Reader error
- Presence of cross-reacting antigens
 - Nontuberculous mycobacteria
 - BCG vaccination

Interferon-gamma Release Assays (IGRAs)

T-SPOT.TB

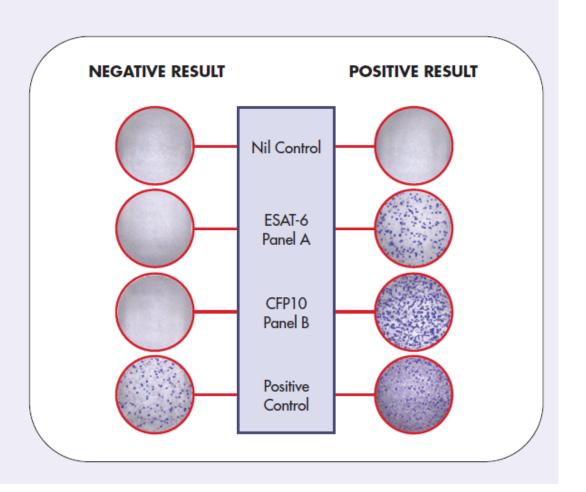
QuantiFERON-TB Gold Plus

- Single blood draw
- •Incubate blood cells with antigens from the region of difference 1 (RD1)
- •Results can be available in 1 day

Species Specificity of ESAT-6 and CFP-10

Tuberculosis complex	Antig	jens
	ESAT	CFP
M tuberculosis	+	+
M africanum	+	+
M bovis	+	+
BCG substrain		
gothenburg	-	-
moreau	-	-
tice	-	-
tokyo	-	-
danish	-	-
glaxo	-	-
montreal	-	-
pasteur	-	-

Environmental strains	ESAT	CFP
M abcessus	-	-
M avium	-	-
M branderi	-	-
M celatum	-	-
M chelonae	-	-
M fortuitum	-	-
M gordonii	-	_
M intracellulare	-	-
M kansasii	+	+
M malmoense	-	-
M marinum	+	+
M oenavense	-	-
M scrofulaceum	-	-
M smegmatis	-	-
M szulgai	+	+
M terrae	-	-
M vaccae	-	-
M xenopi	-	_


T-SPOT.TB

Interpretation of results

- Interferon-gamma is captured and presented as spots from T cells sensitized to TB infection
- Results are interpreted by subtracting the spot count in the negative (NIL) control from the spot count in Panels A and B
 - Positive ≥ 8 spots
 - Negative ≤ 4 spots
 - Borderline 5, 6 or 7 spots
 - Invalid
- The inclusion of a borderline category is intended to reduce the likelihood of false-positive or false-negative results around the test cut-off

Note: It is recommended that borderline and invalid results be retested with a new specimen

QuantiFERON-Gold Plus

	Ref Range & Units		3 d ago
Nil			0.040
TB1-Nil	>=-0.35		-0.01
TB2-Nil	>=-0.35		0.00
Mitogen			>10
Result	Negative, Indetermir	ate	Negative
Comment: M. tub	erculosis infection NOT lik	cely.	
	Ref Range & Units	3 d ago	
	Kei Kange & Onits	_	
Nil		0.190	
TB1-Nil	>=-0.35	0.85	
TB2-Nil	>=-0.35	0.92	
Mitogen		>10	
Result	Negative, Indeterminate	Positive !	
Comment: M. t	uberculosis infection like	ely	_

QFT and T-SPOT Results

QFT

- Positive (≥ 0.35 IU/mL)
- Negative (< 0.35 IU/mL)
- Indeterminate
 - Low mitogen
 - High nil
- Failed
 - Inadequate blood volume
 - Broken tube
 - Delayed incubation

T-SPOT

- Positive (≥ 8 spots)
- Borderline (5-7 spots)
- Negative (≤ 4 spots)
- Invalid
 - Low mitogen
 - High nil
- Failed

TST and IGRAs in U.S. Healthcare Workers

	TST	QFT	T-SPOT
	n(%)	n(%)	n(%)
Baseline (+)	126 (5.2)	118 (4.9)	144 (6.0)
Conversion	<mark>21 (0.9)</mark>	<mark>138 (6.1)</mark>	<mark>177 (8.3)</mark>
Reversion*	11/12 (92)	81/106 (76)	91/118 (77)

^{*} Not all converters had a repeat test

- 11 TST-positive HCWs treated for LTBI
- No cases of active TB

Clinical Scenario #2

- 14-year-old boy was identified as a classroom contact to a patient with smear+/cavitary pulmonary TB. Had BCG as a child, lived previously in Nepal
- Approximately 300 contacts identified in this investigation

Programmatic decisions

- Offer TST to all students?
 - Pro: fast, inexpensive, easy to offer at the middle school
 - Con: false positives among BCG vaccinated students
 - ? Confirm these with QFT?
- Offer IGRAs to all students?
 - Lab capacity is 80 per day; difficulties with off-site phlebotomy and specimen transportation, slightly higher risk of adverse effects such as syncope
- Offer a mixture of TST and IGRAs
 - All the problems with #2 but also stigmatizing those who have had BCG as they will take longer to move through the queue, potentially compromising confidentiality.

Clinical Scenario #2

- 14-year-old boy was identified as a classroom contact to a patient with smear+/cavitary pulmonary TB. Had BCG as a child, lived previously in Nepal.
 - Initial TST negative
 - Follow up 8-week TST was 7 mm
- Mom isn't sure about treatment for LTBI. She requests another test to "confirm" the TST results

Interpretation and Management

- 1- interpret as positive and as a conversion. As an adolescent contact, higher risk of progression to active TB.
- 2- interpret as a positive result from "boosting" from remote TB infection and offer LTBI treatment, counsel against a QFT
- 3- interpret as a false positive result from "boosting" of BCG and agree to do a QFT and if negative, discharge from public health follow-up
- 4- same as #1 but offer QFT because you just know it will be positive and that will help mom get on board with treatment

Clinical Scenario #2

• 14-year-old boy was identified as a classroom contact to a patient with smear+/cavitary pulmonary TB. Had BCG as a child, lived previously in Nepal.

- Initial TST negative
- Follow up 8-week TST was 7 mm
- QFT was done and this was negative

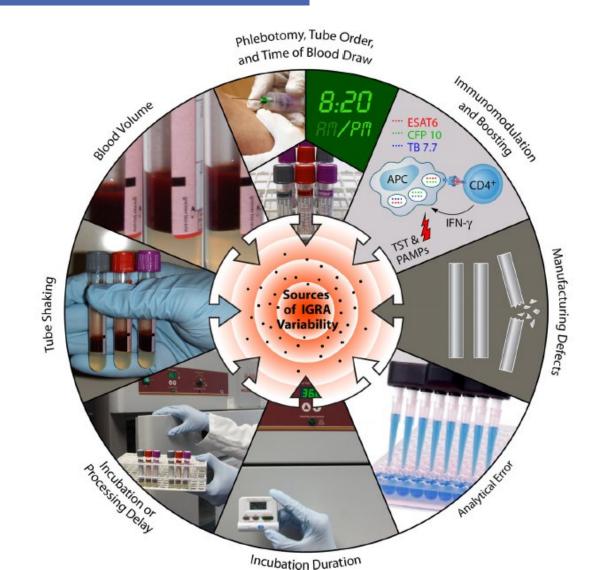
	Results
QFT - Nil	0.05
QFT - MITOGEN	>10
QFT - RESULT	Negative
QFT - TB1 Ag	0.06
QFT - TB2 Ag	0.06

Mom believes the QFT and declines LTBI therapy for her son

IGRA vs. TST

Advantages over TST

- Not affected by BCG vaccination
- Not affected by most nontuberculous mycobacteria
- Interpretation is more objective
- No return visit needed for interpretation of test
- Patients and providers may lack confidence in TST results


- Blood draw
- Cost
- Limitations on lab capacity for large contact investigations

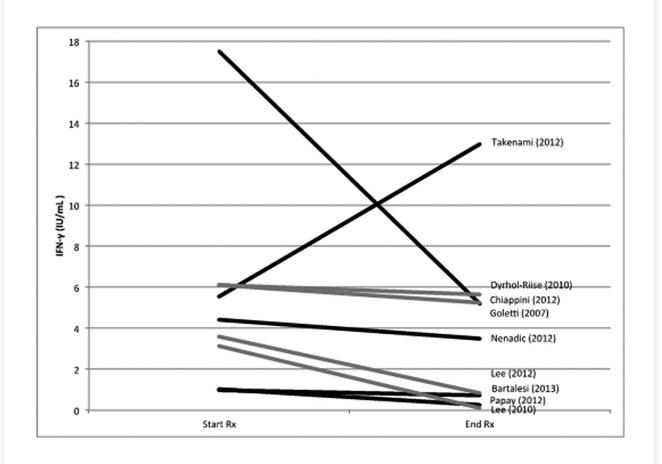
TST vs IGRA – shared challenges

- Low ability to predict short-term progression to active TB
 - Abubaker, Lancet ID 2018 18: 1077
 - Rangaka, Lancet ID 2012 12: 45
 - Diel, Chest July 2012 142: 63
- Reduced sensitivity in immunosuppressed
- Inability to differentiate a resolved infection from a new or ongoing infection

Sources of variability and indeterminate results

- IFN-γ may vary by +0.24 IU/ml when the result is between 0.25-0.80 (Metcalfe AJRCCM 2013)
- S. Africa study of serial QFTs –
 "converters" who had levels < 0.7
 IU/ml had same TB risk as those
 with levels < 0.2 IU/ml(Nemes
 AJRCCM 2017)

Indeterminate/borderline results

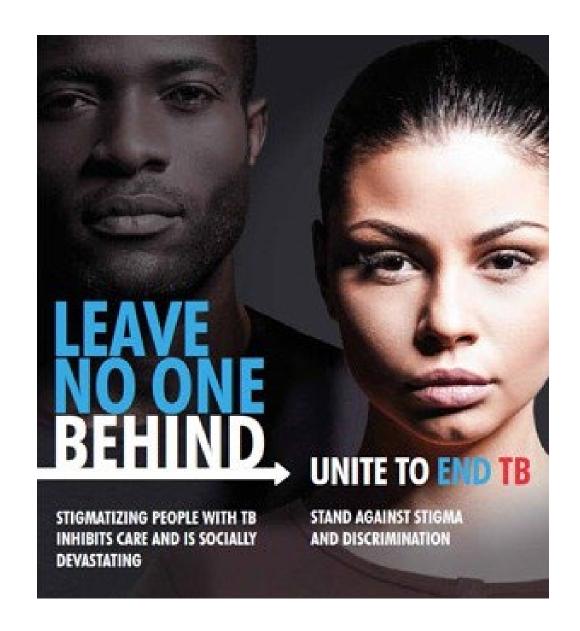

- Cannot determine whether someone has TB infection
 - Low lymphocyte count
 - Low lymphocyte activation potential
 - Specimen collection errors
- Repeat test with valid result (pos/neg) in 68% (Banach IJTLD 2011)
 - Repeating the test is often the next step

Why do we repeat tests for TB infection?

- You don't like the first est result so you repeat it to get the one you re
- First result was indeterminate
- Positive result in low risk individual (healthcare worker who is required to undergo testing)
- High risk individual who has a negative result
 - Repeating in person with HIV whose CD4 has risen above 200
 - •8 week testing in the context of a contact investigation
- Monitor treatmer response

IGRAs <u>cannot</u> be used to monitor treatment response

- 15 studies that evaluated LTBI responses
- No consistent pattern using reversions or quantitative IFN-gamma levels



Slide courtesy of Dr. David Horne Clifford, Tuberculosis 2015

Summary

- Test people at risk for infection
 - 1º people born or lived in a TB endemic area
 - Prioritize those with risk for exposure <u>AND</u> progression (HIV, DM, ESRD etc.) on a programmatic level or clinic level
- Choice of test and interpretation of results must be made based on the clinical situation, risk of the individual(s) being tested, and cost/logistics of testing
- Prefer IGRAs if available and feasible
 - Better in BCG-vaccinated people
 - Results are easily retrieved
- Repeat all (+) IGRAs in lower risk people
 - healthcare workers, those at low risk for progression and no risk for exposure
- Resist the temptation to continue to repeat tests in the context of discordant results
 - Use your pre-test probability to interpret the results

