What can do to help defeat your NTM lung disease!

Ed Chan, M.D.
National Jewish Health
Rocky Mountain Regional Veterans Affairs Medical Center
University of Colorado Denver-Anschutz Medical Campus
ChanE@NJHealth.org
My goals....

• To reveal where NTM are found and how you get exposed to them... to help prevent a first infection or a recurrent infection.

• To provide you hints on how best to manage your NTM lung disease... but follow your doctors’ advice or at least bring up the issue if what I say do not agree with their recommendations. But if you learn one thing that is helpful to you, it will be worth it.

• But I learn as much from your experience so please don’t hesitate to share your thoughts or tell me if you disagree with me.
Four medical terms used by your doctors

• **#1 Bronchiectasis** – permanent dilatation of the airway, susceptible to accumulation of thick mucus and recurrent bacterial infections.

• **#2 Cavity** – a hole in the lung absent of viable lung tissue. A sign of lung destruction due to poorly-controlled infection and inflammation.

![Lung diagrams and CT scan showing a large cavity](image)

- normal
- bronchiectasis
- Large cavity
• **#3 Tree-in-bud opacities** – a sign of inflammation of the small airways = bronchiolitis

![CT scan image](image1)

![Tree image](image2)

• **#4 Macrolide** = azithromycin or clarithromycin
Outline

• What are NTM, most clinically relevant NTM, and the diseases caused by them

• WHERE AND HOW DO WE GET NTM INFECTIONS?

• What are the host risk factors for NTM lung disease?

• DIAGNOSIS AND MANAGEMENT OF NTM LUNG DISEASE

• Top ten recommendations to prevent and treat NTM lung disease
What are NTM?
What are the most clinically relevant NTM?
What are the diseases caused by them?
NTM are “Mycobacteria,” all of which are “acid-fast bacteria” (AFB) on staining.

- **Tuberculosis bacteria**
- **Leprosy bacteria**

NTM (~200 species)
- **Harder to treat**
- **Easier to treat**

“close cousins”

“distant cousins”
Most NTM lung disease in the U.S. are due to MAC or *M. abscessus* complex

- *Mycobacterium avium* complex (MAC)
 - *M. avium*
 - *M. intracellulare*
 - *M. chimaera*
 - + others

- *M. abscessus* complex (all used to be called “*M. abscessus*”)
 - *M. abscessus* sensu stricto and *M. bolletii* (most with functional *ERM*41 gene → no inducible macrolide resistance → harder to treat)
 - *M. massiliense* (non-functional *ERM*41 gene → easier to treat)
Diseases caused by NTM

- **Isolated lung disease**
 - NTM-associated cavity
 - Smoking-related emphysema
 - NTM-associated bronchiectasis
 - Bronchiectasis

- **Skin and soft tissue infections**
 - CHIN TUCK
 - LIPOSUCTION
 - BUNION SURGERY

- **Internal organs other than the lungs**
Where and how do we get NTM infections?
Where do we find NTM?

Soil
Water
Biofilms

Biofilm

Slimy biochemical substance \textit{(bricks & mortar)}

NTM \textit{(people)}

Manhattan skyline
Why it is important to know where NTM are found in the environment

- **To prevent new infection** if you have a susceptible medical condition.
 - COPD / emphysema
 - Bronchiectasis
- **To prevent re-infection** (inhale it, ingest it, and/or aspirate it).
 - **Bad news**: recurrence MAC lung disease is as high as ~50% after completion of treatment.
 - **Good news**: but most recurrences are due to a NEW infection (“re-infections”) – 75% in one study – with a new strain of NTM rather than a relapse of the previous infection (25%).

Despite controversy, showerheads are potential sources of NTM infections

Steps to take to minimize exposure when showering:
- Raise hot water heater temperature to 130°F (140°F in Australia) and flush it yearly.
- Use showerheads that produce large diameter water streams as opposed to fine mists as that seen with water conserving models.
- Clean or replace showerheads periodically.
- Use a bathroom vent and/or open window.
- Turn on the shower for a couple of minutes and leave the room as the initial output from the showerhead may contain the greatest concentration of NTM-containing residual water / biofilms.
Why is potable water not safe from NTM?

- NTM can survive on very little nutrients.
- *Mycobacterium avium* complex (MAC) is 1,000-10,000X more resistant to chlorine than *E. coli*.
- MAC is more resistant to chlorine than *M. scrofulaceum*.
- *M. xenopi* and MAC are particularly resistant to temperatures seen in home hot water heaters.

What are the host risk factors for NTM lung disease?
Predisposing conditions for NTM lung disease

CHRONIC ASPIRATION
- due to swallowing dysfunction
- due to reflux

SMOKING-RELATED EMPHYSEMA

CORTICOSTEROIDS & IMMUNOSUPPRESSIVES
- (e.g., anti-TNFα agents)

Calcified chest adenopathy
- (impairs bronchial drainage)

CIGARETTE SMOKE

Acquired

Genetic / hereditary

Elastin deficiency
- with enlarged trachea and bronchi with outpouchings of the trachea (Mounier-Kuhn syndrome)

CYSTIC FIBROSIS
- (upper lobe bronchiectasis)

Congenital bronchial cartilage deficiency
- (Williams-Campbell syndrome)

ALPHA-1-ANTITRYPSIN DEFICIENCY

Primary ciliary dyskinesia

Pulmonary alveolar proteinosis

Slender individuals with pectus excavatum & scoliosis (”Lady Windermere body morphotype”)

Stomach
Diagnosis and management of NTM lung disease
Criteria for diagnosing NTM lung disease

1. **Clinical symptoms**: Fever, cough, sputum, fatigue, night sweats, chest discomfort, and/or shortness of breath.

2. **CT findings** compatible with NTM lung disease.

3. **Microbiological findings**:
 - \(\geq \) two (+) sputum cultures *or*
 - one (+) bronchoscopy culture *or*
 - Lung biopsy consistent with NTM lung disease
Three major radiographic patterns with NTM lung disease

#1 Upper lobe cavitary disease

72 yo man
Underlying emphysema

#2 Nodular-bronchiectasis

41 yo previously healthy woman
“Life-long” slender body habitus & severe scoliosis

#3 Hypersensitivity ("allergic") pneumonitis ("hot tub lung")

What if you are told “your sputum is positive for NTM”?

1. Cavity or severe bronchiectasis on CT
2. High bacterial load
3. Lots of symptoms

 Treat with antibiotics
 + Airway clearance
 + Avoid exposures

1. Minimal disease on CT
2. Low bacterial load
3. Little or no symptoms

 Airway clearance
 + Avoid exposures

 Re-test sputum

 Treat if positive for NTM, radiographic progression, and/or symptoms (in 10-15%, NTM will “disappear”)

MAC Treatment Algorithm

Risk factors for macrolide resistance
- Macrolide alone
- Macrolide + fluoroquinolone only
- Macrolide + rifampin only
- Macrolide WITHOUT ethambutol

MAC

- **Yes**
 - Macrolide sensitive?
 - **Yes**
 - **Daily**
 - Azithromycin
 - Rifampin
 - Ethambutol
 - ± amikacin
 - Sputum conversion rate: 50-80%
 - **No**
 - Sputum conversion rate: 5%
 - But with amikacin & surgery: ~80%
 - **No**
 - **Daily**
 - Rifampin
 - Ethambutol
 - One other drug
 - ± amikacin
 - Consider surgery

- **No**
 - **Cavities present?**
 - **Yes**
 - **Daily**
 - Azithromycin
 - Rifampin
 - Ethambutol
 - ± amikacin
 - Sputum conversion rate: ~80%
 - **No**
 - **3X per week**
 - Azithromycin
 - Rifampin
 - Ethambutol

Do NOT do this!!
What about treatment for *M. abscessus* complex?

- As with MAC treatment, **susceptibility to macrolide (azithromycin, clarithromycin) is the most important factor in clinical outcome.**

- Macrolides bind to NTM ribosomes (organelles inside cells that make proteins) → inhibiting bacterial protein synthesis.

- **Two types of macrolide resistance:**
 - Mutational resistance to the *rrl* gene → encodes a protein that is part of ribosomes → prevents macrolide binding.
 - Inducible resistance → in the presence of a functional *ERM41* gene → encodes a protein (methylase) that interferes with macrolide binding.

For the clinicians → 2 ways to determine macrolide resistance:
- Incubate macrolide-susceptible *M. abscessus* for 14 days → to determine if resistance develops
- Determine if there is a C28T polymorphism of the *ERM41* gene → if so, then inducible macrolide resistance
M. abscessus complex Treatment Algorithm (M. abscessus, M. bolletii, M. massiliense)

- **Yes**
 - All *M. massiliense*
 - Rare *M. bolletii*
 - Rare *M. abscessus*
 - Initial phase
 - Azithromycin
 - IV imipenem
 - IV tigecycline
 - ± IV amikacin*
 - Continuation phase
 - Azithromycin
 - Amikacin neb (Arikayce®)
 - 1-3 other orals: clofazimine, linezolid, minocycline#, moxifloxacin##, cotrimoxazole
 - *Consider for cavitary disease*

- **No**
 - Most *M. bolletii*
 - Most *M. abscessus*
 - Initial phase
 - IV imipenem
 - IV tigecycline
 - ± clofazimine
 - ± IV amikacin*
 - Continuation phase
 - Amikacin neb (Arikayce®)
 - 2-3 orals: SEE OTHER SIDE
 - Consider surgery

*Macrolide sensitive and NO functional ERM41 gene

(~80% success rate)
General treatment strategies for NTM lung disease

- **Goals of treatment needs to be defined**: symptom control (drug regimen not as intense) vs. attempt to cure (more intense)….because sometimes **drug treatment may make you feel worse** than the disease itself.

- **Clarithromycin (or azithromycin)** is the most important drug for both MAC and *M. abscessus* infections.

- **Three to 4 drugs are generally required initially** and then 2-3 drugs for the long-haul.

- Generally treat for **12 months after** three negative sputum cultures.

- For patients with cavitary disease, **amikacin for the first 2-3 months** is often recommended.

- For those with severe localized disease, **surgery** to remove that lobe or segment may be recommended.
New formulations or repurposing available

- **Omadacycline** (IV or PO) – very good MIC against *M. abscessus* complex, *M. chelonae*, & *M. fortuitum*. May be more tolerable than IV tigecycline (?).
- **Eravacycline** (IV)
- **Cephalosporins + β-lactamase inhibitors**

Promising but not ready for prime-time

- Disulfiram (Antabuse®)
- D-cycloserine
- Nitric oxide (gas to inhale)
- Three bacteriophage cocktail for *M. massiliense* (concomitant antibiotics also given but not clear if NTM was resistant to macrolide).
Mucus clearance mechanisms: the best method is the one you do regularly!

- **Pharmacologic**
 - Expectorant (e.g., guaifenesin)
 - Pulmozyme® (“chews up” sticky DNA – indicated for CF patients only)
 - Hypertonic saline
 - Inhaled mannitol (a sugar to help liquify sputum)

- **Non-pharmacologic**
 - Aerobika®
 - Acapella®
 - High-frequency oscillatory vest
 - Chest physiotherapy
 - Incentive spirometry
 - Huff cough
 - Hydration
 - Exercise
Hypertonic saline (HS)

• Usefulness of HS is well-established in cystic fibrosis.

• **Mechanism of action**: helps hydrate mucous, improves mucociliary clearance, stimulates cough, & some antimicrobial effect.

• **Potential benefits**: enhances expectoration of sputum, reduces sputum stickiness, reduces exacerbation of bronchiectasis, improves lung function, and enhances quality of life.

• **Dose**: 3% or 7% saline as a nebulizer once or twice daily.

• **Side effects**: throat irritation, cough, & bronchoconstriction (wheeze).

Use of the Acapella® valve

• Acapella® combines both positive airway pressure and airway vibrations to mobilize secretions and can be used in virtually any position.

• Acapella® is color-coded (DH green for high-flow and DM blue for low-flow; most adults should use the green one).

• **Use of the Acapella® valve**
 • Assure proper setting of the resistance dial on the end of the Acapella® valve. Start at the mid-resistance point and rotate toward + or - to increase or decrease resistance as tolerated. Adjust resistance so that you can exhale for at least 3 sec.
 • Sit up with good posture to use the Acapella although various positions may be required for optimal drainage of secretions.
 • Place the Acapella® mouthpiece in the mouth. Seal lips tightly around the mouthpiece.
 • Take in a bigger than normal breath and hold for 2-3 sec.
 • Exhale actively (NOT forcefully) until the flutter sound ceases.
 • Repeat 10X → 3 huff coughs → a big cough to bring out the sputum.
 • Repeat each session 2-4X per day.

• Clean the Acapella® at the end of the day in liquid dish detergent, rinse and dry.

• Disinfect Acapella® weekly by removing the mouthpiece from the body and soak in 70% rubbing (isopropyl) alcohol for 5 min or 3% hydrogen peroxide for 30 min. Rinse thoroughly with water and drain/dry in a vertical position.
Use of the Aerobika®

• Best to be trained by a Respiratory Therapist before use.

• **Use:**
 – Place mouthpiece in mouth.
 – Inhale bigger than normal breath and hold ~3 seconds.
 – Adjust resistance so that one is able to ~3 seconds.
 • Repeat 10X → 3 huff coughs → a big cough to bring out the sputum.
 – Repeat each session 2-4X per day.

• Aerobika® may come with a **manometer**, which gauges whether the expiratory blow is adequate. The manometer contains a **green zone** (5-20 cm H$_2$O), **yellow zone** (20-40 cm), and **red zone** (40-60 cm). It is recommended to stay within the **GREEN ZONE**; e.g., 10-15 cm H$_2$O pressure.

• Based on the chart below, at a resistance setting of “3”, if one exhales to 10-15 cm H$_2$O pressure, this results in an airway beating frequency of 13-16 Hz.

• Aerobika® may be used in-line with a nebulizer that contains a bronchodilator or hypertonic saline.
Nutrition and NTM

- Thin individuals are more susceptible to NTM lung disease. Thus, maintain ideal or closer to ideal body weight.
- Eat healthy fats (e.g., avocados, olive oil, fish fat) and eggs.
- Mirtazepine is a sleep aid that also increases appetite.
- Make sure 25-OH vitamin D level is between 30-60 ng/mL.
Gastroesophageal reflux

- **Definition**: reflux of stomach contents into the esophagus and even higher.
- **Significance**: can damage the esophagus and spill into the lungs.
- Antacids decrease stomach acid but does not prevent reflux.
- Sleep with head-of-bed elevated at 30° or higher.
- **Drugs that can worsen reflux**: albuterol, oxybutynin, Benadryl®, tricyclic antidepressants, calcium channel blockers, nitrates, opioids, progesterone, quinidine, benzodiazepines, and theophylline.
- **Foods that can worsen reflux**: coffee, chocolate, caffeine, alcohol, peppermint, garlic, onions, fatty-spicy foods, citrus fruits, and tomatoes.
Avoid gardening but if you must...

- Dampen soil first to lessen aerosolization...
- Avoid gardening on windy days.
- Avoid mowing lawns.
- Pot plants outside on non-windy days.
- Wear N-95 masks if exposure to soil is significant.
Ways to prevent superimposed respiratory infections...

- Avoid crowds / carry and use hand sanitizers.

- **Use your elbow to:** greet people ("I don’t want to pass any germs to you"), press elevator buttons, push subway turnstiles, and open doors.

- Do not touch your nose / eyes after being in public places without first cleaning hands.

- Keep up to date on influenza, pneumococcal, and pertussis vaccines.
When prescribed multiple inhaled therapies, recommended order of use...

1. **Short-acting bronchodilator**: albuterol or levalbuterol ± ipratropium

2. **Hypertonic saline**

3. **Vibratory vest**

4. **Pulmozyme® (DNAse)** – indicated for only CF patients

5. **Inhaled corticosteroids**

6. **Long acting bronchodilator**

7. **Inhaled antibiotics**

Several formulations have 5 + 6 combined in one inhaler

Inhaled corticosteroids have been associated with increased NTM lung infection
Top Ten Recommendations

1. Avoid inhaling aerosols of soil and water.
2. Raise hot water heater temperature to 130°F and flush yearly.
3. Take measures to prevent stomach reflux.
4. Avoid cigarette smoke exposures.
5. Eat healthy fats in moderation, keep vitamin D at good levels and keep active.
6. Take antibiotics as directed.
7. Do airway clearance religiously.
8. Join NTM Support Groups and educate yourself and others about various aspects of NTM lung disease (NTMir® resource).
9. Find medical professionals with experience, enthusiasm, and patience to treat NTM lung disease.
10. Keep an orderly record of your medical test results and key events.