

Hereditary Angioedema: A Challenging Diagnosis

Hereditary angioedema (HAE) is a rare disease typically caused by a mutation in the gene for C1 esterase inhibitor (C1-INH). Deficiency or dysfunction of C1-INH leads to overproduction of bradykinin, which ultimately leads to subcutaneous and submucosal edema. In another form of HAE, C1-INH levels are normal (HAE-nC1). In these patients several mutations have been identified; however, most patients have an unknown genetic cause¹

There are 3 types of HAE¹

Type I and II can be diagnosed by measuring serum complement levels including C4 and antigenic and functional levels of C1-INH¹

HAE-nC1 is primarily a clinical diagnosis¹:

- Currently, there are believed to be at least 4 different genetic mutations in HAE-nC1: FXII, plasminogen, angiopoietin-1, and kininogen 1¹
- Currently, the only commercially available test is for HAE-FXII²
- In Europe, only 20% to 25% of patients with HAE-nC1 have an FXII mutation. It is notable that HAE-FXII appears to be very rare in the United States²
- Clinical symptoms are more likely to start in adulthood for these patients versus Type I and Type II patients³

Hereditary Angioedema Lab Testing and Codes

If HAE is suspected, diagnostic testing can confirm or rule out Type I and II. Please refer to this as a guide to order these tests.

Diagnostic workup in patients suspected to have HAE may include⁴:

- Serum C4 levels
- C1-INH antigenic level concentration
- C1-INH antigenic function
- C1q levels

If C1 inhibitor complement tests are negative but clinical symptoms strongly indicate HAE, a diagnosis of HAE-nC1 can be considered.

In patients suspected to have HAE-nC1, diagnosis requires evaluation of 5:

- A history of recurrent angioedema in the absence of concomitant urticaria or use of a medication known to cause angioedema
- Documented normal or near-normal C4, C1-INH antigen, and C1-INH function
- One of the following:
 - A demonstrated F12 mutation associated with the disease
 - A positive family history of angioedema*
 - Documented evidence of lack of efficacy of chronic high-dose antihistamine therapy[†]

Because HAE is a highly heterogeneous genetic disease and mutations that have not been previously identified are possible, a negative test result cannot be used to exclude the diagnosis.

^{*}Positive family history is not a requirement, as *de novo* mutations are possible.

[†]Cetirizine at 40 mg/d or the equivalent for at least 1 month and an interval expected to be associated with 3 or more attacks of angioedema.

National Jewish (ADx)^a 1-303-270-2541

Laboratory Code	Test Name	Normal Range	CPT Code	ICD-10-CM Code
C4	C4 Level	11–61 mg/dL (depending on age)	86160	D84.1
C4RAT	Ratio of C4d to C4	Male/Female: C4: 0.112–0.441 mg/mL C4d: 0.52–7.88 mcg/mL Ratio: <25	86160 (x2)	
CEIQ	C1-Esterase Inhibitor Level (C1-INH)	20–37 mg/dL	86160	
CEICHR	C1-Inhibitor (C1-INH) Function, Chromogenic Assay	N/A	86161	
C1Q	C1q Level	83–125 mcg/mL	86160	
INHA	C1-Esterase Inhibitor Autoantibody [†]	<39.0% of STD	83520	
FXII	Factor XII SNP Analysis [‡]	N/A	81403	

^aAdvanced Diagnostic Laboratories, National Jewish Health – Affiliated with the University of Colorado, Denver. https://www.nationaljewish.org/for-professionals/diagnostic-testing/adx/diagnostic-testing. Accessed May 24, 2019.

WAO/EAACI guidelines recommend that all patients suspected to have HAE-1/2 are assessed for blood levels of C1-INH function, C1-INH protein, and C4.¹

LabCorp^b 1-800-631-5250, Ext. 2

Laboratory Code	Test Name	Normal Range	CPT Code	ICD-10-CM Code
123020	Hereditary Angioedema (HAE) (Panel includes all tests below)	See below	86160 (x2)	D84.1
001834	Complement C4, Serum	13–44 mg/dL (depending on age/sex)	86160	
004648	Complement C1 Esterase Inhibitor, Serum	21–39 mg/dL	86160	
120220	Complement C1 Esterase Inhibitor, Functional	Normal: >67% Equivocal: 41–67% Abnormal: <41%	86161	
016824	Complement C1q, Quantitative	Male: 11.8–23.8 mg/dL Female: 11.8–24.4 mg/dL	86160	

^bLaboratory Corporation of America[®] Holdings. https://www.labcorp.com/test-menu. Accessed May 24, 2019.

Quest Diagnostics^c 1-800-222-0446

Laboratory Code	Test Name	Normal Range	CPT Code	ICD-10-CM Code
17706	Hereditary Angioedema (HAE) (Panel includes all tests below)	See below	86160 (x2), 86161	D84.1
353	Complement C4c	14–57 mg/dL (depending on age/sex)	86160	
298	C1 Esterase Inhibitor, Protein	21–39 mg/dL	86160	
297	C1 Inhibitor, Functional	Normal: ≥68% Equivocal: 41–67% Abnormal: ≤40%	86161	
981	Complement Component C1q	5.0-8.6 mg/dL	86160	

^cQuest Diagnostics Incorporated. https://testdirectory.questdiagnostics.com/test/home. Accessed May 24, 2019.

 $^{^{1}}$ The presence of autoantibodies against C1-INH may explain why plasma-derived C1-INH replacement therapy is not effective in some patients. 6

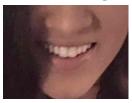
[†]Informed Consent is required prior to completing. Consent must be obtained by the provider and maintained in the patient medical record.

HAE should be suspected in patients who present with some of the following¹:

- Recurrent angioedema attacks
- A positive family history (present in ~75% of patients with HAE)*
- Onset of symptoms in childhood/adolescence*
- Recurrent and painful abdominal symptoms
- Occurrence of upper airway edema
- Presence of prodromal signs or symptoms before swellings
- Absence of urticaria (wheals)
- Failure to respond to antihistamines, glucocorticoids, or epinephrine
- *These factors are more common for patients with suspected HAE Type 1 and 2, compared to HAEn-C1.

Misdiagnosis of HAE is common—as many as 66% of patients are misdiagnosed as per a 2016 study of 663 HAE patients⁷

Incorrect diagnosis may include:


- Allergic⁸
- Gastrointestinal⁹
 - Appendicitis, irritable bowel syndrome, recurrent pancreatitis
- Psychosomatic¹⁰

In a 2015 survey of 143 HAE patients, nearly half reported a delay of ≥10 years between initial symptoms and diagnosis¹¹

Swelling due to HAE does not respond to antihistamines, glucocorticoids, or epinephrine¹

Below are a series of images showing the impact of HAE swells on several patients

Without swelling

During swelling

Facial, hand, and abdominal swelling during an HAE attack.

REFERENCES: 1. Maurer M, Magerl M, Ansotegui I, et al. The international WAO/EAACI guideline for the management of hereditary angioedema-the 2017 revision and update. Allergy. 2018;73 (8):1575-1596. 2. Zuraw BL. Hereditary angioedema with normal C1 inhibitor: four types and counting. J Allergy Clin Immunol. 2018;141(3):884-885. 3. Bork K. Diagnosis and treatment of hereditary angioedema with normal C1 inhibitor. Allergy Asthma Clin Immunol. 2010;6(1):e1-8. 4. Henao MP, Kraschnewski JL, Kelbel T, Craig TJ. Diagnosis and screening of patients with hereditary angioedema in primary care. Ther Clin Risk Manag. 2016;12:701-711. 5. Zuraw BL, Bork K, Binkley KE, et al. Hereditary angioedema with normal C1 inhibitor function: consensus of an international expert panel. *Allergy Asthma Proc.* 2012;33(suppl 1): S145-S156. doi:10.2500/aap.2012.33.3627. 6. Bork K, Staubach-Renz, P, Hardt J. Angioedema due to acquired C1-inhibitor deficiency: spectrum and treatment with C1-inhibitor concentrate. Orphanet J of Rare Dis. 2019;14(1):65. 7. Zanichelli A, Longhurst HJ, Maurer M, et al. Misdiagnosis trends in patients with hereditary angioedema from the real-world clinical setting. Ann Allergy Asthma Immunol. 2016;117(4):394-398. doi:10.1016/j.anai.2016.08.014. 8. Lunn ML, Santos CB, Craig TJ. Is there a need for clinical guidelines in the United States for the diagnosis of hereditary angioedema and the screening of family members of affected patients? Ann Allergy Asthma Immunol. 2010;104(3):211-214. 9. Berger J, Carroll MP Jr, Champoux E, Coop CA. Extremely delayed diagnosis of type II hereditary angioedema: case report and review of the literature. Mil Med. 2018;183(11-12):e765-e767. 10. Nzeako UC, Frigas E, Tremaine WJ. Hereditary angioedema: a broad review for clinicians. Arch Intern Med. 2001;161(20): 2417-2429. 11. Banerji A, Li Y, Busse P, et al. Hereditary angioedema from the patient's perspective: a follow-up patient survey. Allergy Asthma Proc. 2018;39(3):212-22.

