

Chest Radiograph Interpretation in Tuberculosis

Tilman Koelsch, MD

National Jewish Health - Department of Radiology

Disclosures

None

Goals

- Understand importance of adequate radiographic technique
- Basics of CXR interpretation
- Identify features of tuberculosis
 - Adults
 - Children
 - HIV
 - Healed/inactive
- Role of CT

Approach to chest radiograph

- Technical
 - Exposure
 - Inclusion
 - Rotation
 - Inspiration
- Initial "Gestalt"

- Systematic survey
 - Lungs/ribs Symmetry
 - Mediastinum/heart
 - Soft tissues/abdomen
- Miss/ "Hidden" areas

Technical adequacy of chest X-ray

Exposure

Patient positioning (not rotated, etc)
Inclusion (entire lungs)
Inspiration

Quality of this Chest X-ray?

• Miss/"Hidden" areas

- Apices
- Hila/suprahilar
- Trachea/bronchi
- Retrocardiac
- Retrodiaphragmatic

Outline

- Lung in TB
- Mediastinum
- Putting it Together Typical and Atypical TB
 - Kids and HIV Pts.
- "Often Overlooked" Pleura and Airways
- CT

Common **LUNG** X-ray findings in tuberculosis

- Opacity
 - Nodule
 - Nodular pattern
 - Consolidation
 - Atelectasis
 - Pleural effusion

- Lucency
 - Cavity
 - Bronchiectasis

Nodule

Rounded opacity, well or poorly defined, measuring up to 3 cm in diameter.

Nodular pattern

Innumerable small rounded opacities that are discrete and range in diameter from 2 to 10 mm

Miliary pattern

Profuse, discrete, rounded pulmonary opacities 2-3 mm in diameter generally uniform in size diffusely distributed throughout the lungs- sometimes lower lung predominant

Millet Seeds

Consolidation

Homogenous increase in lung opacity

Often poorly defined and confluent

Atelectasis

Reduced volume of a lobe or lung, with increased opacity

Displacement of mediastinum, hila, bronchi, or fissures

Not talking about mild atelectasis

2nd Signs helpful

Elevated Minor Fissure

Pleural effusion

Fluid in the pleural space

On erect chest radiograph, characterized by blunting of costophrenic angle and meniscus sign

Pleural thickening (vs effusion)

Blunted CP angle is not curved

Thickening usually extends up the chest wall

Cavity

Gas-filled space within consolidation, mass, or nodule

Bronchiectasis

Ring shadows

Train tracks

Adenopathy

Challenging to see on X-ray unless bulky

Luckily TB adenitis tends to be conspicuous (AND often important clue of TB)

Hilar>Mediastinal

Mediastinal Adenopathy

Hilar Adenopathy

Vs. Normal Lateral Hilum

Hilar Adenopathy

Vs. Normal Lateral Hilum

AP "Window"

Left lung between aortic arch and the left PA

Almost always seen

Usually concave or straight

Abnormal convexity
Lymph nodes
Mediastinal mass
Vascular abnormality

AP "Window" Adenopathy

Abnormal AP Window vs. Normal AP Window

Right Paratracheal Adenopathy

Adenopathy vs.

Normal R. Paratracheal Stripe

Right Paratracheal Adenopathy

Primary vs Post-primary Tuberculosis

In adults, there is no significant difference in radiographic features between recently and remotely acquired TB.

Therefore, "post-primary" and "primary" terms inaccurate

Better to use terms "typical" and "atypical"

Rozenshtein A, et al. AJR. 2015 May 204:974-978 Geng E, et al. JAMA. 2005 Jun 8;293(22):2740-5. Jones BE, et al. AJRCCM. 1997 Oct;156(4 Pt 1):1270-3.

Typical tuberculosis

- Upper lobe "infiltrate"
- Upper lobe cavities

Typical tuberculosis

• Apical/Posterior Segments Upper Lobe - & Superior Segment Lower Lobes

Typical tuberculosis

• Apical/Posterior Segments Upper Lobe - & Superior Segment Lower Lobes

Typical tuberculosis

Consolidation with Cavitation

Typical tuberculosis

Typical tuberculosis

Typical Tuberculosis - Endobronchial spread

Typical Tuberculosis - Endobronchial spread

Atypical tuberculosis

- "Atypical" is more common in children & HIV
- Lower or mid-lung opacity
- Lymphadenopathy <u>Only</u>
- Effusions, without cavity or upper lung opacity
 - In kids, simple effusions more common with older age, as "hypersensitivity reaction" to TB.

Atypical Tuberculosis- RLL cavity/hilar adenopathy

Atypical Tuberculosis

Atypical TB- Hilar/Mediastinal Lymphadenopathy

Atypical Tuberculosis - Miliary Pattern

Childhood Tuberculosis - Lymphadenopathy

Finding		
Any adenopathy	175	92%
Right hilar	83	43%
With mediastinal nodes	43	23%
Left hilar	37	19%
With mediastinal nodes	16	8%
Bilateral hilar	49	26%
With mediastinal nodes	44	23%
Mediastinal only	6	3%

Leung AN.
Radiology.
1992
Jan;182(1):8
7-91.

(n=191)

Parenchymal abnormality in childhood TB

Finding			
Parenchymal abnormality with adenopathy	130	68%	
Parenchymal abnormality without adenopathy	2	1%	
Right lung consolidation	78	41%	
Left lung consolidation	21	11%	
Bilateral consolidation	33	17%	
Lobar atelectasis	16	8%	Leung AN. Radiology.
Effusion	11	6%	1992 Jan;182(1):8 7-91.
Normal CXR	14	7%	National Health

"Primary" tuberculosis in childhood: Pearls

- Parenchymal abnormality is more common in children older than 3 years
- Adolescents with recent infection usually have typical features of tuberculosis with upper lobe nodules or cavity

- Leung AN, et al. Radiology. 1992 Jan;182(1):87-91.
- Koh WJ, et al. Korean J Radiol. 2010 Nov-Dec;11(6):612-7.

Childhood TB - Mid/lower lung Consolidation

Childhood TB - Hilar/Mediast. Lymphadenopathy

Chest Radiograph - TB and HIV

- Chest radiograph often looks like "atypical" ("primary") disease – in more advanced TB
- Adenopathy is common and highly predictive of tuberculosis
- Radiograph may be normal in up to 10% of cases

Chest Radiograph - TB and HIV

Chest Radiograph - TB and HIV

Pleural Tuberculosis

- Effusions common in adults (6-15%)
- Less common in children
- Very uncommon finding in infants
- But, may be sole finding in kids
- Air fluid level may indicate bronchopleural fistula

Pleural Effusion

Post-Primary Tuberculosis - Empyema

Post-Primary Tuberculosis - Empyema

Bronchopleural Fistula

Empyema Necessitans

Tuberculosis and Airways

Atelectasis due to

- 1) Nodal enlargement
- 2) Endobronchial abnormality obstructing airway
- compressing airway

May never resolve

Airway narrowing due to nodal enlargement

Bronchostenosis

The Chest Radiograph - Healed Tuberculosis

- Calcified granuloma <u>Ghon lesion</u>
- Calcified granuloma & hilar calcification Ranke complex
- Apical pleural thickening
- Fibrosis and volume loss

Healed Tuberculosis - Ghon Lesion

Note – Calcified nodule is more dense than rib.

Healed Tuberculosis - Ranke Complex

Healed Tuberculosis - Apical Fibrosis

"Activity" of tuberculosis

• <u>Activity cannot be determined from single chest</u> <u>radiograph</u>

• Progressive disease indicates activity

Cavitation and bronchogenic spread suggest activity

Stable tuberculosis

Old X-rays often helpful (Want 6 months+ stability)

Role of CT in tuberculosis

- Useful in "Equivocal" Chest X-ray
 - CT increases the specificity of a TB diagnosis
- Occult miliary disease and cavities
- Necrotizing adenopathy
- Roadmap for bronchoscopist
- Presurgical

CT in TB Adenopathy

CT in Airway TB

CT in Subtle Findings (i.e. Cavities)

Summary

- Chest radiograph requires systematic approach
- Typical (Post-primary) TB: Upper lung fibrocavitary disease, "endobronchial spread" nodules
- Atypical (Primary) TB: Usually children, HIV, consolidation with adenopathy
- Serial radiographic evaluation important to determine activity

References

- Nachiappan A, et al. Pulmonary Tuberculosis: Role of Radiology in Diagnosis and Management. Radiographics 2017; 37:52-72.
- Jeong YJ, et al. Pulmonary Tuberculosis: Up-to-Date Imaging and Management. AJR 2008; 191:834-844
- Burrill J, et al. **Tuberculosis: A Radiologic Review.** Radiographics 2007;27:1255-1273.

Thank You

