NTM Lecture Series for Providers

September 19-20, 2019 NATIONAL JEWISH HEALTH

Bronchiectasis

Pamela J. McShane, MD
Section of Pulmonary and Critical Care Medicine
University of Chicago

Disclosures

Speaker and advisory board member for Insmed

Prevalence of Bronchiectasis in US

Retrospective Analysis of Health-care Claims for Bronchiectasis

https://www.bronchiectasisandntminitiative.org

Reid LM *Thorax.* 1950; 5:233

NTM Lecture Series for Providers

Histopathology of Bronchiectasis

A = Pseudostratified columnar, ciliated epithelium

B = thickened epithelium with intraepithelial lymphocytes

C = submucosa with dense infiltrate of lymphocytes and plasma cells

D = blood vessel with reactive endothelial cells

Normal

Photos courtesy of Aliya N. Husain, MD

Etiology (or associated diseases) of Bronchiectasis

PCD: Primary Ciliary Dyskinesia ABPA: Allergic Bronchopulmonary Aspergillosis Pasteur et al. *Am J Respir Crit Care Med* 2000; 162: 1277 Shoemark et al. *Resp Med* 2007; 101: 1163 McShane et al. *Chest* 2012; 142: 159

Bronchiectasis: evaluation for etiology

Historical Investigation

- Family History
- Neonatal respiratory health
- Childhood symptoms
- Fertility History
- Gastrointestinal Symptoms
- Symptoms of Aspiration
- Prior Infections
- Connective Tissue symptoms
 - -Dry Eyes, mouth
 - -Red, hot, swollen joints
 - -Rash

Bronchiectasis: evaluation for etiology

Historical Investigation

- Family History
- Neonatal respiratory health
- Childhood symptoms
- Fertility History
- Gastrointestinal Symptoms
- Symptoms of Aspiration
- Prior Infections
- Connective Tissue symptoms
 - -Dry Eyes, mouth
 - -Red, hot, swollen joints
 - -Rash

Laboratory Testing

- ✓ Sputum for AFB and bacteria
- ✓ CBC with differential
- ✓ Serum Immunoglobulins (incl. IgE)
- ✓ Specific IgE or G to Aspergillus
- ✓ Alpha 1 anti-trypsin
- Consider depending on symptoms:
 - -Swallow eval / pH monitoring
 - -Auto ab relevant to history
 - -S. pneumo 23 serotypes
 - -nasal Nitric Oxide

Pathophysiology of Bronchiectasis

Treatment of Bronchiectasis

- 1) Nebulized Agents
 - -7% Hypertonic Saline
- 2) Breathing Techniques
 - -Active Cycle of Breathing
 - -Postural Positioning
- 3) Chest Physiotherapy:

McShane, et al. Am J Respir Crit Care Med 2013; 188:647 Cole, Eur J Respir Dis Suppl 1986; 147:6

Sputum is not the same as mucus

Mucus

- Mucin Glycoproteins
- Antimicrobial and antiinflammatory properties
- Cleared by cilia

Sputum

- Large polymers that include:
 - DNA
 - Filamentous actin
 - Proteoglycans
 - Bacteria
 - Inflammatory cells
 - Impairs cilia motion

Bronchiectasis Toolbox: www.bronchiectasis.com.au

Normal Cough

- Clears secretions to the 7th or 8th generation
- Deep inspiration → closure of the glottis:
 - Up to 300 mmHg intra-thoracic pressure
 → dynamic airway compression & shear force detaching mucus from the airway wall
 - High explosive, turbulent expiratory flow rate (~500 L/min)

Fink, JB. *Respir Care* 2007; 52: 1210-1221

Coughing is not effective in bronchiectasis

- Bronchial wall instability and "floppy" airways close prematurely
 - Expiratory flow is reduced, thereby limiting the effectiveness of the cough

Airway Clearance Techniques

✓ Allow air to move behind obstruction and ventilate distal regions

✓ Modulate expiratory airflow in a way to propel secretions proximally up the airways

Modes of Airway Clearance

to be CUSTOMIZED to patient preference and success

Breathing Techniques

Active Cycle of Breathing

> Autogenic Drainage

> > Huff

Postural Positioning

Devices

Positive Expiratory Pressure (PEP) Mask

Positive Expiratory Pressure (PEP) with Oscillation

High Frequency Chest Wall Oscillation (HFCWO) "Vest"

Nebulized Solutions

Hypertonic saline (7%, 3%)

Albuterol

Acetylcysteine

Assistance

Percussion

Active Cycle of Breathing Technique

Controlled Breaths Deep Inspiratory Holds (3 sec) Relaxed Controlled Breaths

Mobile Loi

Low Volume Huffs High Volume Huffs

Active Cycle of Breathing Technique

Controlled Breaths Deep Inspiratory Holds (3 sec) Relaxed Controlled Breaths

Low Volume Huffs

High Volume Huffs

Thoracic Expansion and Breath Hold improves ventilation

Interdependence

Collateral Ventilation

Pendelluft Flow

Active Cycle of Breathing Technique

Controlled Breaths Deep Inspiratory Holds (3 sec) Relaxed Controlled Breaths

ropeity be

Low Volume Huffs

High Volume Huffs

Huff

- Accelerates expiratory airflow creating <u>high linear velocities which</u>:
 - > Increases airway surface liquid
 - ➤ Shears mucus from the airway wall*
- At low lung volumes, <u>Equal Pressure</u>
 <u>Point (EPP) shifts to the periphery</u>

At EPP dynamic compression of the airways creates increase of linear velocity of expiratory airflow which helps to propel secretions proximally

* Depends on mucus depth and viscoelastic properties

www.bronchiectasis.com.au

www.bronchiectasis.com.au

Autogenic Drainage

- Uses controlled breathing in 3 stages
- Different lung volumes to loosen, mobilize, and move secretions to the central airways
- Performed with an open glottis
- Typically performed in seated position

Bronchiectasis Toolbox: www.bronchiectasis.com.au

- √ Ventilates obstructed regions of the lung
- \checkmark Avoids dynamic compression of the airways by modulation of expiratory airflow

Oscillating with positive expiratory pressure

Oscillation

- Improves mucus rheological properties:
 - Reduces mucus rigidity (sum of viscosity and elasticity)
 - Reduces spinnability (thread forming capacity of mucus)
 - Improves cough clearance index (higher index = easier to clear)

Positive Expiratory Pressure

High frequency chest wall oscillation (HFCWO)

High-frequency chest wall oscillation

Benefits

- Alters rheological properties of mucus
- Creates an expiratory flow bias that shears mucus from the airway walls
- Enhances ciliary beat frequency
- Creates peak expiratory flow rate sufficient to overcome mucus adhesion

High-frequency chest wall oscillation

Benefits

- Alters rheological properties of mucus
- Creates an expiratory flow bias that shears mucus from the airway walls
- Enhances ciliary beat frequency
- Creates peak expiratory flow rate sufficient to overcome mucus adhesion

Concerns

- Provides no means of ventilating behind obstructive airways
- Does not provide PEP
 - End expiratory volume has been reported to decrease by 10-15% during compression

Nebulized Hypertonic Saline

- Nicolson et al. Resp Med 2012; 106: 661-667
- Blinded, prospective, randomized, 12-month study
- 6% hypertonic saline vs. 0.9% saline Q 12hrs.
- QOL improved in both groups
- Sputum bacterial load decreased:
 - 55% of hypertonic saline group had positive cultures at the start of the study
 - 15% of hypertonic saline group had positive cultures at the end the study

Nebulized Hypertonic Saline

Nicolson et al. Resp Med 2012; 106: 661-667

Figure 2 SGRQ Totals. No significant difference between groups at any time point.

Figure 3 LCQ Totals. No significant difference between groups at any time point.

Pathophysiology of Bronchiectasis

Nebulized Antibiotics

Nebulized Antibiotics

- Tobramycin
- Colisitin
- Gentamicin*
- Aztreonam
- Ciprofloxacin

- ✓ Reduce bacterial load
- ✓ Variable improvement in Quality of Life
- ✓ Have not consistently reduced exacerbations
- ✓ **NOT** FDA approved!!

^{*} The only inhaled antibiotic shown to reduce exacerbations in study

Nebulized Antibiotics

- Strongest guideline recommendation:
 - Chronic infection with P. aeruginosa
 - At least 3 exacerbations per year

Pathophysiology of Bronchiectasis

Reducing Exacerbation Frequency Macrolides

	EMBRACE ¹ Lancet 2012; 380:660	BAT ² JAMA 2013; 309:1251	BLESS ³ JAMA 2013; 309:1260
Number	141	83	117
Treatment	Azithromcyin 500mg PO vs placebo Mon/Wed/Fri	Azithromycin 250mg PO vs placebo Daily	Erythromycin ethylsuccinate 400mg PO vs placebo Twice daily
Trial Length	6 months (treatment); 1-year total follow up	1 year	1 year
Location	New Zealand	Netherlands	Australia
Exacerbations in prior 12 months	≥1 exacerbation needing antibiotic treatment	≥3 exacerbations needing antibiotic treatment	2 exacerbations needing antibiotic treatment

Recommendations for chronic macrolide use in bronchiectasis

		I		
Adults with bronchiectasis	Adults with bronchiectasis	Adults with bronchiectasis		
and chronic <i>Pseudomonas</i>	and chronic <i>Pseudomonas</i>	NOT infected with		
infection for whom inhaled	infection in addition to	Pseudomonas who have		
antibiotics are	inhaled antibiotics	frequent exacerbations		
contraindicated, not	Who <u>have high</u>			
tolerated or not feasible	exacerbation frequency			
	despite taking an inhaled antibiotic			
Conditional recommendation, low quality of evidence		Conditional		
		recommendation,		
		moderate quality of		
		evidence		

Polverino et al. *Eur Respir J* 2017; 50: 1700629

Recommendations for chronic macrolide use in bronchiectasis

Bronchiectasis conundrum: many neutrophils but *Pseudomonas* persists

Sputum on LJ Slant growing Paeruginosa

Neutrophils are impaired compared to normal hosts

Blood neutrophils from bronchiectasis patients have:

- ✓ Increased activation & degranulation, even in the stable state and irrespective of disease severity
- ✓ Impaired phagocytosis
- ✓ Delayed apoptosis

Bedi et al. Am J Resp Crit Care Med 2018; 198: 880

Activation of serine proteases

Activation of serine proteases

The Willow Study

Assessment of INS 1007 in Subjects with Bronchiectasis

- Phase 2, Randomized, double-bind, placebo controlled, multi-center
 Study
 - Once daily oral tablet, administered for 24 weeks
 - Primary outcome: time to first pulmonary exacerbation
 - Secondary outcomes: exacerbation frequency; QOL; FEV1;
 sputum Neutrophil Elastase
- Initial data expected early 2020
- https://clinicaltrials.gov/ct2/show/NCT03218917

Bronchiectasis Phenotypes

Concomitant NTM and *Pseudomonas aeruginosa*Decrease in FVC

Hsieh et al. Infection and Drug Resistance 2018; 11: 1137

Concomitant NTM and *Pseudomonas aeruginosa*Decrease in FVC

Hsieh et al. Infection and Drug Resistance 2018; 11: 1137

Concomitant NTM and Pseudomonas aeruginosa

Group 1 no NTM / no Pseudomonas Group 2 NTM only Group 3 Pseudomonas only Group 4 NTM & Pseudomonas

Hsieh et al. Infection and Drug Resistance 2018; 11: 1137

Normal Cilia

- In healthy lungs, cilia beat at a mean frequency of 11-13 Hz
- Propelling mucus up the airways at 4-5 mm/min⁻¹

Cilia motion of a patient with absent inner dynein arms

Clinical features of primary ciliary dyskinesia

Features	Comments	Sensitivity	Specificity
Unexplained Neonatal Respiratory Distress	Term gestation Supplemental oxygen > 1 d No meconium aspiration	57%	89%
Chronic Cough	Year round Wet cough Began < 6months of age	62%	74%
Chronic Nasal Congestion	Year round Began < 6 months of age	74%	60%
Situs inversus totalis		46%	92%

Leigh et al. Ann Am Thorac Soc 2016; 13:1305

Diagnostic evaluation for PCD

Features

Unexplained Neonatal Respiratory Distress

Chronic Cough

Chronic Nasal Congestion

Situs inversus totalis

Pathophysiologic / Diagnostic Criteria

- ✓ Low nasal nitric oxide (<77 nL/min)</p>
- ✓ Ultrastructural abnormalities of cilia on electron microscopy
- Homozygosity of disease-causing variant on genetic testing

Leigh et al. Ann Am Thorac Soc 2016; 13:1305

Diagnostic evaluation for PCD

Features

Unexplained Neonatal Respiratory Distress

Chronic Cough

Chronic Nasal Congestion

Situs inversus totalis

Pathophysiologic / Diagnostic Criteria

- ✓ Low nasal nitric oxide (<77 nL/min)</p>
- ✓ Ultrastructural abnormalities of cilia on electron microscopy
- Homozygosity of disease-causing variant on genetic testing

Leigh et al. Ann Am Thorac Soc 2016; 13:1305

Bronchiectasis in Irish Wolfhounds

Patient Resources

Thank you

Property beblogious

Property beblogious