Assessment Tools and Biomarkers for COPD & Asthma

2/6/2019
Laurie A. Manka, MD
Assistant Professor
National Jewish Health

Jay Finigan, MD
Associate Professor
National Jewish Health
Disclosures

Neither Dr. Manka nor Dr. Finigan have any financial disclosures to report.
Learning Objectives

• Discuss updated clinical practice guidelines to the assessment and management of patients with COPD and asthma, including the role of exacerbations.

• Review emerging evidence related to targeted therapies and potential biomarkers to select personalized treatment in asthma and COPD.

• Review current and emerging therapies for the management of COPD and asthma
Learning Objectives: Asthma

• Discuss assessment and management of asthma
 • Updated Practice Guidelines
 • Role of exacerbations
• Review clinically relevant biomarkers
• Mention emerging therapies for the management of severe asthma.
Learning Objectives: Asthma

• Discuss assessment and management of asthma
 • Updated Practice Guidelines
 • Role of exacerbations

• Review clinically relevant biomarkers

• Mention emerging therapies for the management of severe asthma.
Asthma

- HETEROGENOUS disease
- chronic airway inflammation
- wheeze, shortness of breath, chest tightness
- cough
- VARIABLE expiratory airflow limitation

- Paraphrased from Global Initiative for Asthma (GINA)
Confirm diagnosis of Asthma

- Sneezing
- Nasal Congestion
- Headaches
- Sinus polyps
- Aspirin
- Throat tightness

Dyspnea
cough
Chest
tightness
wheezing

- Allergens/
 Environmental/
 Occupational

- Odors
- Fragrances
- Temperature
- Humidity
- Dust
- Air pollution
- Foods

Upper airway Symptoms

- GERD/
 Aspiration symptoms

Late vs early onset

Exertion Dyspnea
vs.
Exercise induced bronchoconstriction

Nocturnal Symptoms

Smoking

Exertion Dyspnea
vs.
Exercise induced bronchoconstriction

Triggers

Courtesy of Balkissoon R
Consider the differential/Mimickers

- COPD
- CHF "Cardiac wheeze"
- Vocal Cord Dysfunction
- GERD/Aspiration
- Sinus Disease
- Allergies/Allergic rhinitis
- Eosinophilic Pneumonia
- Bronchiolitis
- Bronchiectasis
- Tracheal Stenosis
- Foreign body aspiration
- Eosinophilic Granulomatosis with Polyangiitis

Property of Presenter
Not for Reproduction
Stepwise management - pharmacotherapy

3 changes to reduce risk of exacerbations

1. Consider low dose ICS
2. Leukotriene receptor antagonists (LTRA) Low dose theophylline
3. Med/high dose ICS + LTRA (or + theoph)

Not for children <12 years

*For children 6-11 years, the preferred Step 3 treatment is medium dose ICS

**For patients prescribed BDP/formoterol or BUD/formoterol maintenance and reliever therapy

† Tiotropium by mist inhaler is an add-on treatment for patients ≥12 years with a history of exacerbations

GINA 2018, Box 3-5 (2/8) (upper part)
Assess Response/Control

- Asthma Control Test
- Asthma Control Questionnaire
- Peak Expiratory Flow Readings
What is Severe Asthma?

The definition of severe asthma (according to ERS/ATS 2014) (7)

During treatment with:
- High-dose ICS + at least one additional controller (LABA, montelukast, or theophylline) or
- Oral corticosteroids >6 months/year

...at least one of the following occurs or would occur if treatment would be reduced:
- ACT <20 or ACQ >1.5
- At least 2 exacerbations in the last 12 months
- At least 1 exacerbation treated in hospital or requiring mechanical ventilation in the last 12 months
- \(FEV_1 <80\% \) (if \(FEV_1/FVC \) below the lower limit of normal)
Why is Severe Asthma important?

• Make up 3-10% of asthma population
• Generate 60% of asthma related costs
• More health care expenditures than type 2 diabetes, stroke, and COPD

Difficult to Treat Asthma True Refractory Asthma
Workup of Severe Asthma

- CT: Chest and Sinus
- GI investigations
- Laryngoscopy
- Bronchoscopy
- Clinical Biomarkers
Laryngoscopy
Laryngoscopy

- Supraglottic index
- Edema
- Erythema
- Secretions
- Hypertrophy

Martin RJ and Good JT. Supraglottic Index Learning Program
http://www.nationaljewish.org/professionals/education/pro-ed/Supraglottic-Index-Learning-Program/silp
Bronchoscopy

- BAL
 - Eosinophils and neutrophils
 - Acute infection
- Endobronchial biopsies
 - tissue eosinophilia
 - Airway remodeling
- Brushings
 - Chronic infection
Workup of Severe Asthma

• CT: Chest and Sinus
• GI investigations
• Laryngoscopy
• Bronchoscopy

• Clinical Biomarkers
 • Eosinophils
 • IgE
 • FENO
 • Sputum neutrophils
 • Periostin*
 • Dipeptidyl Peptidase-4. *
Learning Objectives: Asthma

• Discuss assessment and management of asthma
 • Updated Practice Guidelines
 • Role of exacerbations

• Review clinically relevant biomarkers

• Mention emerging therapies for the management of severe asthma.
Eosinophils

• 40–60% of asthma is eosinophilic

• Symptom severity is increased in eosinophilic asthma

• Elevated Sputum eosinophils are associated with increased risk of exacerbation

• Increased blood eosinophils (>400 cells/µL) associated with higher risk of severe exacerbations and lower likelihood of asthma control.

Eosinophils

- Sputum Eos: >2-3%
 - Risk of bronchospasm
- Blood Eos: >300-400 cells/µL
 - Interpret with caution
 - Moderate sensitivity and specificity of detecting sputum eos >3%
- IL-5 Driven
- Related biologic agents:
 - mepolizumab, reslizumab, benralizumab.
 - dupilumab
Immunoglobulin E

- Mediates type 1 hypersensitivity reactions
- Key role in allergic asthma
- Binds receptors on mast cells and basophils drives Th-2 inflammation
- Generation of antigen-specific IgE requires class switching, which is driven by IL-4 and IL-13.
- Related biologic agents: omalizumab
Exhaled Nitric Oxide

- Nitric oxide is a free radical molecule
- Epithelial vasodilation and bronchodilation
- Activated through IL-13 and IL-4
- Elevated NO in asthmatics vs healthy controls
- FeNO >50 ppb is associated with a good response to ICS
- Related biologic agents: omalizumab, dupilumab
Exhaled Nitric Oxide

• More popular and clinical available

• 2018 GINA updates:
 • FeNO can support the decision to start ICS, but cannot safely be recommended for deciding against treatment with ICS
 • Children/adolescents: FENO-guided treatment led to exacerbations than treatment based on current guidelines
 • Adults: no significant difference in exacerbations
Sputum Neutrophils

• 20% of asthma patients have sputum neutrophils >61%
• Across literature: 40-76% sputum neutrophils considered abnormally high
• Blood neutrophils do not correlate to sputum
• Sputum neutrophilia associated with poor response to corticosteroids
• No biologic targeted therapy

Periostin* and Dipeptidyl Peptidase-4*

- Periostin
 - Extracellular matrix protein
 - IL-13
 - Elevated airway levels in asthmatics vs healthy controls
 - Anti-IL-13 agents showed improved asthma outcomes only in patients with elevated serum periostin levels

- DPP-4
 - Found in bronchial epithelial cells
 - Stimulated by IL-13
 - Increased serum DPP-4 predicted a reduction in asthma exacerbations with use of anti-IL-13 agent
Learning Objectives: Asthma

• Discuss assessment and management of asthma
 • Updated Practice Guidelines
 • Role of exacerbations

• Review clinically relevant biomarkers

• Mention emerging therapies for the management of severe asthma.
<table>
<thead>
<tr>
<th>Inflammatory Phenotype</th>
<th>Common Clinical Features</th>
<th>Biomarkers in Patients Receiving High-Dose ICS</th>
<th>Add-on Pharmacologic Maintenance Therapies</th>
<th>Additional Strategies to Consider*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2 (Th2) inflammation</td>
<td>IL-4, IL-5, IL-13 mediated inflammation with high eosinophils or FENO</td>
<td>Early onset, allergic, with elevated IgE level; Later onset, obesity, female sex, variable airflow obstruction; Exacerbations; Nasal polyps</td>
<td>Blood eosinophil count $\geq 300/\mu$L; FENO ≥ 20 ppb; Sputum eosinophils $\geq 2%$</td>
<td>Anti–IgE (If IgE $= 30-700$ IU/mL and IgE-mediated hypersensitivity to a perennial allergen) Anti–IL-5</td>
</tr>
<tr>
<td>Non-Type 2 inflammation</td>
<td>Neutrophilic airway inflammation</td>
<td>Poor response to ICS; Purulent sputum; Bronchiectasis; Low lung function</td>
<td>Sputum PMNs $\geq 40-60%$</td>
<td>No phenotype-specific treatment currently available Treat infections Consider macrolide antibiotics</td>
</tr>
<tr>
<td>Paucigranulocytic (noninflammatory) asthma</td>
<td>Fixed or variable airflow obstruction</td>
<td>No Th2 biomarkers and sputum PMNs $\leq 40-60%$</td>
<td>No phenotype-specific treatment currently available</td>
<td>Nonpharmacologic strategies (including pulmonary rehabilitation)</td>
</tr>
<tr>
<td>Possible Th2 inflammation</td>
<td>Mixed eosinophilic and neutrophilic inflammation</td>
<td>Features of both eosinophilic and neutrophilic airway inflammation</td>
<td>Th2 and neutrophilic markers</td>
<td>Trial of macrolide antibiotics† for 3-6 months</td>
</tr>
</tbody>
</table>

* Assumes that alternative diagnoses have been excluded, comorbidities have been identified and managed, patient-related factors and environmental exposures have been addressed, inhaled therapy and adherence have been optimized, and non-biologic therapy has been considered or tried (see Roadmap for details).
† Not approved by the U.S. Food and Drug Administration for the treatment of asthma.

Abbreviations: ABPA, allergic bronchopulmonary aspergillosis; AERD, aspirin-related respiratory disease; FENO, fractional nitric oxide concentration in exhaled breath; ICS, inhaled corticosteroid; IgE, immunoglobulin E; IL, interleukin; PMN, polymorphonuclear leukocyte; Th2, T-helper 2.
Treatment updates: Benralizumab

• Anti- IL-5 Rα, found on eosinophils and basophils
• FDA approved in eosinophilic asthma in November 2017
• Unique MOA: Neutralizing and cytotoxic effects
• Now included in GINA Management 2018 update
Treatment updates: Benralizumab

Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting β₂-agonists (SIROCCO): a randomised, multicentre, placebo-controlled phase 3 trial

Eugene R Bleeker, J Mark FitzGerald, Pascal Chanez, Alberto Papi, Steven F Weinstein, Peter Barker, Stephanie Spyro, Geoffrey Gilmartin, Magnus Aurøllius, Viktoria Werkström, Mitchell Goldman, on behalf of the SIROCCO study investigators

Benralizumab, an anti-interleukin-5 receptor α monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): a randomised, double-blind, placebo-controlled phase 3 trial

J Mark FitzGerald, Eugene R Bleeker, Panameswaran Nad, Stephanie Korn, Ken Olda, Marek Lommatzsch, Gary T Ferguson, William W Busse, Peter Barker, Stephanie Spyro, Geoffrey Gilmartin, Viktoria Werkström, Magnus Aurøllius, Mitchell Goldman, on behalf of the CALIMA study investigators

↓ annual asthma exacerbation rate
In patients with peripheral eos >300 Cells/μL treated with Benralizumab
Compared to placebo
Treatment updates: Dupilumab

- Anti IL-4Rα
- Inhibits IL-4 and IL-13 activity
- Approved for moderate and severe asthma Oct 2018
 - Eosinophilic
 - Oral corticosteroid dependent regardless of phenotype

Image courtesy of Wechsler ME
Treatment updates: Dupilumab

↓ annualized rate of severe asthma exacerbations by 48%

↑ FEV1 from baseline
In dupilumab group vs Placebo.

Greatest treatment benefit in Patients with eos >300 cells/µL And FeNO >25 ppb.
Conclusions

• Discuss assessment and management of asthma
 • Updated Practice Guidelines: 3 new changes
 • Role of exacerbations

• Review clinically relevant biomarkers:
 • Eosinophils, IgE, FeNO, and Sputum Neutrophils

• Mention emerging therapies for the management of severe asthma.
 • Benralizumab and Dupilumab
Thank You

mankal@njhealth.org
CASE PRESENTATION

Dr. Jay Finigan
Case Presentation

72-year-old female with:
• constant cough productive of yellow sputum worse in the past 6 months
• mild exertional shortness of breath for 3 years; slowly progressive
• not exercising; decreased her gardening
• + chest tightness with the shortness of breath; no wheezing
• her PCP gave her albuterol a year ago. Using the albuterol 3-4x/day
• no hospitalizations/urgent care visits in the past year for her breathing
• no antibiotics or prednisone in the past year

PCP = primary care provider
Past History
• Coronary artery disease
• Type 2 diabetes
• Hypertension
• Gastroesophageal reflux disease
• Sinus surgery

Medications
Aspirin daily, losartan daily, metformin twice a day

Social History
• Married
• Smoked age 18–64, 1 pack a day
• 4 glasses of wine a week
• No illicit substance abuse
• Retired school teacher
• No occupational or environmental chemical exposures
Case Presentation, Cont...

Family History
• Father
 – Coronary artery disease, COPD
• Mother
 – Lung cancer
• No other respiratory disease in the family

Physical Exam
• Vitals: Temp: 37.6° Celsius, HR: 89, RR: 18, BP: 135/79, SaO₂: 91% on room air, weight: 160lbs, height: 5’4”, BMI: 27.5
• General: No apparent distress
• HEENT: Sclera clear, EOMI, mouth clear of lesion, no adenopathy, no sinus tenderness
• Lungs: Rhonchi bilaterally, symmetric, no crackles
• Cardiac: RRR no murmur/rub/gallop
• Abdomen: Non-tender, no distention, no rebound
• Extremities: No cyanosis or clubbing, No lower extremity edema

HR = heart rate; RR = respiratory rate; BP = blood pressure; SaO₂ = arterial oxygen saturation; BMI = body mass index; HEENT = head, ears, eyes, nose, throat; EOMI = extraocular movements intact; RRR = regular rate and rhythm.
EVALUATION OF SUSPECTED COPD
COPD-Definition

• COPD is a common, preventable and treatable disease that is characterized by persistent respiratory symptoms and airflow limitation that is due to airway and/or alveolar abnormalities usually caused by significant exposure to noxious particles or gases.
• Mix of emphysema and airways disease that varies patient to patient.
Evaluation of COPD

• Presence and severity of *spirometric obstruction*.
• Nature and magnitude of *symptoms*.
• History of moderate to severe *exacerbations*.
• Presence of *comorbidities*.
Evaluation for Suspected COPD

Screening for COPD is not recommended but case finding is.
Evaluation for Suspected COPD

- **SYMPTOMS**
 - Shortness of breath
 - Chronic cough
 - Sputum

- **RISK FACTORS**
 - Host factors
 - Tobacco
 - Occupation
 - Indoor/outdoor pollution

SPIROMETRY: Required to establish diagnosis
Spirometry in COPD

• Reproducible and objective measurement of physiologic lung function

• Criterion for chronic airflow limitation
 – Post-bronchodilator ratio of $\text{FEV}_1/\text{FVC} < 0.70$

$\text{FEV}_1 =$ Forced expiratory volume, 1 second; $\text{FVC} =$ Forced vital capacity

COPD Assessment Tool

<table>
<thead>
<tr>
<th>Stage</th>
<th>Severity</th>
<th>Post bronchodilator FEV₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOLD 1</td>
<td>Mild</td>
<td>FEV₁ ≥ 80% predicted</td>
</tr>
<tr>
<td>GOLD 2</td>
<td>Moderate</td>
<td>50% ≤ FEV₁ < 80% predicted</td>
</tr>
<tr>
<td>GOLD 3</td>
<td>Severe</td>
<td>30% ≤ FEV₁ < 50% predicted</td>
</tr>
<tr>
<td>GOLD 4</td>
<td>Very Severe</td>
<td>FEV₁ < 30% predicted</td>
</tr>
</tbody>
</table>

Post-bronchodilator FEV₁/FVC < 0.7

Spirometrically confirmed diagnosis

Assessment of airflow limitation
Risk of Exacerbation and Poor Outcome Increases with Worsening Airflow Limitation

<table>
<thead>
<tr>
<th>Severity of COPD*</th>
<th>Exacerbations (per year)†‡¶</th>
<th>Hospitalizations (per year)†¶</th>
<th>3-year Mortality†‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOLD 1 (Mild)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GOLD 2 (Moderate)</td>
<td>0.7 – 0.9</td>
<td>0.11 – 0.2</td>
<td>11%‡</td>
</tr>
<tr>
<td>GOLD 3 (Severe)</td>
<td>1.1 – 1.3</td>
<td>0.25 – 0.3</td>
<td>15%†</td>
</tr>
<tr>
<td>GOLD 4 (Very Severe)</td>
<td>1.2 – 2.0</td>
<td>0.4 – 0.54</td>
<td>24%†</td>
</tr>
</tbody>
</table>

* Post bronchodilator FEV1
† Placebo arm of the Toward a Revolution in COPD Health (TORCH) study
‡ Placebo arm of the Understanding Potential Long-Term Impacts on Function with Tiotropium (UPLIFT) study
¶ Placebo arm of the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) study

COPD Assessment Tool

Spirometrically confirmed diagnosis → Assessment of airflow limitation → Exacerbation history

Post-bronchodilator FEV₁/FVC < 0.7

<table>
<thead>
<tr>
<th>FEV₁ (% predicted)</th>
<th>GOLD 1</th>
<th>GOLD 2</th>
<th>GOLD 3</th>
<th>GOLD 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 80</td>
<td></td>
<td>50-79</td>
<td>30-49</td>
<td>< 30</td>
</tr>
</tbody>
</table>

Property of Presenter
Not for Reproduction
Definition of Exacerbation

• **Acute** worsening of respiratory symptoms.
 - More than day-to-day variation
• Leads to change in medication use or frequency of use.
• Frequency and severity of exacerbations is important.
• Best predictor of future exacerbations is a history of earlier exacerbations.
• Hospitalization for exacerbation is associated with a poor prognosis and increased risk of death.
• At a population level, severity of obstruction is associated with increased risk of exacerbation and death.
 – 22% of GOLD 2 vs. 47% for GOLD 4
 – However, FEV1 is too variable to be a useful predictor for a specific patient.
Exacerbations more common with increasing obstruction

COPD Assessment Tool

Spirometrically confirmed diagnosis

Assessment of airflow limitation

Post-bronchodilator FEV₁/FVC < 0.7

FEV₁ (% predicted)

GOLD 1 ≥ 80
GOLD 2 50-79
GOLD 3 30-49
GOLD 4 < 30

Exacerbation history

≥ 2
or
≥ 1 leading to hospital admission
0 or 1 (not leading to hospital admission)

C D
A B

© 2017 Global Initiative for Chronic Obstructive Lung Disease
COPD Assessment Tool

Spirometrically confirmed diagnosis

Assessment of airflow limitation

Post-bronchodilator FEV₁/FVC < 0.7

Assessment of symptoms

Exacerbation history

≥ 2 or
≥ 1 leading to hospital admission

0 or 1 (not leading to hospital admission)

GOLD 1: ≥ 80
GOLD 2: 50-79
GOLD 3: 30-49
GOLD 4: < 30

A

B

C

D

Assessment of Symptoms: Modified Medical Research Council (mMRC) questionnaire

<table>
<thead>
<tr>
<th>mMRC Grade 0.</th>
<th>I only get breathless with strenuous exercise.</th>
</tr>
</thead>
<tbody>
<tr>
<td>mMRC Grade 1.</td>
<td>I get short of breath when hurrying on the level or walking up a slight hill.</td>
</tr>
<tr>
<td>mMRC Grade 2.</td>
<td>I walk slower than people of the same age on the level because of breathlessness, or I have to stop for breath when walking on my own pace on the level.</td>
</tr>
<tr>
<td>mMRC Grade 3.</td>
<td>I stop for breath after walking about 100 meters or after a few minutes on the level.</td>
</tr>
<tr>
<td>mMRC Grade 4.</td>
<td>I am too breathless to leave the house or I am breathless when dressing or undressing.</td>
</tr>
</tbody>
</table>

COPD Assessment Test (CAT)

For each item below, place a mark (x) in the box that best describes you currently. Be sure to only select one response for each question.

<table>
<thead>
<tr>
<th>Example:</th>
<th>I am very happy</th>
<th>I am very sad</th>
</tr>
</thead>
<tbody>
<tr>
<td>I never cough</td>
<td>0 1 2 3 4 5</td>
<td>I cough all the time</td>
</tr>
<tr>
<td>I have no phlegm (mucus) in my chest at all</td>
<td>0 1 2 3 4 5</td>
<td>My chest is completely full of phlegm (mucus)</td>
</tr>
<tr>
<td>My chest does not feel tight at all</td>
<td>0 1 2 3 4 5</td>
<td>My chest feels very tight</td>
</tr>
<tr>
<td>When I walk up a hill or one flight of stairs I am not breathless</td>
<td>0 1 2 3 4 5</td>
<td>When I walk up a hill or one flight of stairs I am very breathless</td>
</tr>
<tr>
<td>I am not limited doing any activities at home</td>
<td>0 1 2 3 4 5</td>
<td>I am very limited doing activities at home</td>
</tr>
<tr>
<td>I am confident leaving my home despite my lung condition</td>
<td>0 1 2 3 4 5</td>
<td>I am not at all confident leaving my home because of my lung condition</td>
</tr>
<tr>
<td>I sleep soundly</td>
<td>0 1 2 3 4 5</td>
<td>I don’t sleep soundly because of my lung condition</td>
</tr>
<tr>
<td>I have lots of energy</td>
<td>0 1 2 3 4 5</td>
<td>I have no energy at all</td>
</tr>
</tbody>
</table>

Jones et al. ERJ 2009; 34 (3) 648-54.
Update in GOLD- 2016- less reliance on obstruction only

GOLD 3 or 4 criteria for lung function

C

GOLD 3 or 4 criteria for lung function

D

≥ 2 Exacerbation/yr OR
≥ 1 Exacerbation w/hospital

mMRC 0-1 CAT < 10

A

mMRC 0-1 CAT < 10

B

mMRC ≥ 2 CAT ≥ 10

≤ 1 Exacerbation/yr
• Spirometry
 – FEV₁/FVC: 0.55 (normal ≥ 0.70)
 – FEV₁: 45% of predicted (normal ≥ 80%)
 – FVC: 74% of predicted (normal ≥ 80%)

• mMRC 2

<table>
<thead>
<tr>
<th>FEV₁ (% predicted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOLD 1</td>
</tr>
<tr>
<td>GOLD 2</td>
</tr>
<tr>
<td>GOLD 3</td>
</tr>
<tr>
<td>GOLD 4</td>
</tr>
<tr>
<td>≥ 80</td>
</tr>
<tr>
<td>50–79</td>
</tr>
<tr>
<td>30–49</td>
</tr>
<tr>
<td>< 30</td>
</tr>
</tbody>
</table>

© 2017 Global Initiative for Chronic Obstructive Lung Disease
Other Tests During Initial Evaluation

- Alpha-1 antitrypsin level and phenotype
- Chest imaging to rule out other causes of symptoms
 - Screening CT if indicated
- Lung volumes and diffusion capacity
- Arterial blood gas and oxygen assessment
 - Hypercapnea and hypoxia
- Composite scores
 - BODE score: body mass index, obstruction, dyspnea, and exercise
Case Presentation

• 44 y.o. w/♂ smoker c/o some shortness of breath with walking. Never sought medical attention until he reported to ER “unable to catch breath”
• Treated for acute asthma, discharged
PFTs

Lung Volumes

<table>
<thead>
<tr>
<th></th>
<th>Pred</th>
<th>Pre</th>
<th>%Pred</th>
<th>Post</th>
<th>%Pred</th>
<th>%change</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLC</td>
<td>6.99</td>
<td>10.32</td>
<td>150</td>
<td>10.62</td>
<td>154</td>
<td>3</td>
</tr>
<tr>
<td>IC</td>
<td>2.98</td>
<td>2.94</td>
<td>98</td>
<td>2.91</td>
<td>97</td>
<td>-1</td>
</tr>
<tr>
<td>TGV</td>
<td>3.90</td>
<td>7.37</td>
<td>189</td>
<td>7.70</td>
<td>198</td>
<td>4</td>
</tr>
<tr>
<td>ERV</td>
<td>2.27</td>
<td>1.17</td>
<td>51</td>
<td>1.59</td>
<td>76</td>
<td>36</td>
</tr>
<tr>
<td>RV</td>
<td>1.62</td>
<td>6.20</td>
<td>382</td>
<td>6.12</td>
<td>377</td>
<td>-1</td>
</tr>
<tr>
<td>SVC</td>
<td>5.20</td>
<td>4.11</td>
<td>75</td>
<td>4.80</td>
<td>87</td>
<td>9</td>
</tr>
<tr>
<td>RV / TLC</td>
<td>23.6</td>
<td>60.1</td>
<td>255</td>
<td>57.6</td>
<td>244</td>
<td>-4</td>
</tr>
<tr>
<td>TGV / TLC</td>
<td>56.59</td>
<td>71.46</td>
<td>125</td>
<td>72.55</td>
<td>120</td>
<td>2</td>
</tr>
</tbody>
</table>

Forced Expiration

<table>
<thead>
<tr>
<th></th>
<th>Pred</th>
<th>Pre</th>
<th>%Pred</th>
<th>Post</th>
<th>%Pred</th>
<th>%change</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC</td>
<td>5.20</td>
<td>3.53</td>
<td>68</td>
<td>5.33</td>
<td>66</td>
<td>0</td>
</tr>
<tr>
<td>FEV 1</td>
<td>4.09</td>
<td>0.63</td>
<td>15</td>
<td>0.70</td>
<td>17</td>
<td>11</td>
</tr>
<tr>
<td>FEV1 / FVC</td>
<td>79</td>
<td>18</td>
<td>23</td>
<td>20</td>
<td>25</td>
<td>11</td>
</tr>
<tr>
<td>FEF 25-75</td>
<td>3.73</td>
<td>0.21</td>
<td>5</td>
<td>0.23</td>
<td>6</td>
<td>-3</td>
</tr>
<tr>
<td>FEF 50</td>
<td>10.05</td>
<td>3.97</td>
<td>40</td>
<td>3.79</td>
<td>32</td>
<td>-5</td>
</tr>
<tr>
<td>FEF 75</td>
<td>10.47</td>
<td>0.36</td>
<td>4</td>
<td>0.31</td>
<td>4</td>
<td>-14</td>
</tr>
<tr>
<td>FEF 50</td>
<td>6.21</td>
<td>0.26</td>
<td>4</td>
<td>0.25</td>
<td>4</td>
<td>-5</td>
</tr>
<tr>
<td>FEF 75</td>
<td>3.15</td>
<td>0.18</td>
<td>5</td>
<td>0.18</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>PIF</td>
<td>5.11</td>
<td>4.67</td>
<td>127</td>
<td>6.30</td>
<td>123</td>
<td>-3</td>
</tr>
<tr>
<td>FEF50 / FIF50</td>
<td>150</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>-4</td>
</tr>
</tbody>
</table>

Additional Studies

<table>
<thead>
<tr>
<th></th>
<th>Pred</th>
<th>Pre</th>
<th>%Pred</th>
<th>Post</th>
<th>%Pred</th>
<th>%change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw</td>
<td>1.69</td>
<td>2.19</td>
<td>130</td>
<td>2.30</td>
<td>136</td>
<td>5</td>
</tr>
<tr>
<td>sGaw</td>
<td>0.152</td>
<td>0.062</td>
<td>41</td>
<td>0.056</td>
<td>37</td>
<td>-9</td>
</tr>
<tr>
<td>DLCO SB</td>
<td>57.85</td>
<td>5.31</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLCO C</td>
<td>5.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA</td>
<td>6.82</td>
<td>6.65</td>
<td>91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLCO VA</td>
<td>5.55</td>
<td>0.80</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLCOC/VA</td>
<td>0.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI max Average</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE max Average</td>
<td>149</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Pred</th>
<th>Pre</th>
<th>%Pred</th>
<th>Post</th>
<th>%Pred</th>
<th>%change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Imaging
What’s the diagnosis
What’s the next test?
Alpha-1 Antitrypsin (AAT)

- Glycoprotein coded for by single gene on long arm of chromosome 14
- Synthesis predominantly in hepatocytes, but also expressed by many other cells
- Transported to blood where it bathes all tissues
- Prototype SERPIN
- Primary target: neutrophil elastase
Alpha-1 Antitrypsin (AAT)

- 52 kDa glycoprotein
- Acute phase reactant
- Main anti-inflammatory protein
- At least 200 different mutations of *serpina1* gene
- About 1/2 of known mutations are associated with deficiency or dysfunction
- Mutations may affect the amount synthesized, secreted, and/or its function
- The frequency of the Z allele suggests a selective advantage
Lung Disease

Protease/Antiprotease Balance

ELASTASE Burden

ANTIELASTASE Protection

ELASTASE Burden

ANTIELASTASE Protection

NORMAL

Alpha-1
AAT Deficiency (AATD)

- Genetic/Hereditary condition causing decreased levels of AAT in blood and tissues
- Usually estimated to be 100,000 people in the US and a similar number in Europe (likely wrong!)
- Over 20 million carriers of a single AATD gene in the US
- Predisposes to lung, liver, other disease
- AAT replacement available as treatment but recommend specialist input.
Co-dominant expression

Alpha-1 Antitrypsin Blood Levels
Serum AAT Levels by Phenotype

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>MM</th>
<th>MS</th>
<th>SS</th>
<th>MZ</th>
<th>SZ</th>
<th>ZZ</th>
<th>null</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of Normal Values</td>
<td>100%</td>
<td>99%</td>
<td>92%</td>
<td>79%</td>
<td>43%</td>
<td>13%</td>
<td>0%</td>
</tr>
<tr>
<td>Phenotype</td>
<td>38%</td>
<td>34%</td>
<td>38%</td>
<td>28%</td>
<td>19%</td>
<td>13%</td>
<td>6%</td>
</tr>
</tbody>
</table>
Disease Associated with Alpha-1

• Others
 – Necrotizing panniculitis
 – Vasculitis (especially Granulomatosis with Polyangiitis (GPA))
 – Hepatocellular Carcinoma
 – Susceptibility to atypical TB
 – Susceptibility to chronic active hepatitis
The Lung in AATD

Silverman EK & Sandhaus RA 2009; NEJM 360:2749-2757
Disease Mechanisms

- **Lung disease**
 - Lack of protease inhibitor
 - Pro-inflammtory state

- **Liver disease**
 - Excess of protease inhibitor

- **Vasculitis**

- **Polymerization of Alpha-1**
 - Decreases inhibitory activity
 - Pro-inflammatory
Treatment: Alpha-1

Estimated loss of lung density by CT
Comorbidities

- Comorbidities are common in COPD and can impact quality of life and mortality.
- Cardiovascular disease
- Skeletal muscle loss and dysfunction
- Metabolic syndrome
- Osteoporosis
- Depression
- Anxiety
- Lung Cancer
Special Considerations

• Lung Volume Reduction Surgery
• Transplant
Emerging Therapies in COPD
Emerging Therapies in COPD

- Angiotensin receptor blockers
- Decreased CS-induced emphysema and airway wall thickness in mice
- Decreased emphysema progression in an observational MESA study
Losartan in CS-induced Injury

Decreased emphysema and airway wall thickness

Mice exposed to CS 2 hrs/d, 5d/wk, 7 wks

Mechanism tied to decreased TGF-β signaling

Podowski M et al. JCI 2012
Angiotensin Pathway in Patients

ARB/ACEI Associated with Decreased Progression of Emphysema in Patients

MESA Study - observational study - 4472 enrolled (fewer got full CT scanning).

12% on ACEI, 6% on ARB

Parikh MA et al. Annals ATS 2017
Losartan in COPD

- Current study of Losartan in COPD underway: LEEP.
- COPD patients randomized to losartan vs. placebo daily for 48 weeks.
- Main outcome is emphysema progression on CT.
Thank you!

• Questions?