The Natural History of Food Allergy

Bruce J. Lanser, MD
Assistant Professor of Pediatrics
Director, National Jewish Health Pediatric Food Allergy Center
Associate Director, Pediatric Allergy Fellowship Training Program
Disclosures

- Advisory Board: AlImmune
- Speaker: AlImmune
- Research Support: AlImmune, DBV
- Member: NIH/NIAID sponsored Consortium on Food Allergy Research (CoFAR)
Objectives

1. Review the natural history of IgE-mediated food allergy in children and adults
2. Discuss the epidemiology of IgE-mediated and non-IgE-mediated food allergies in the United States
3. Evaluate the risk factors for food-induced anaphylaxis and recognize the epidemiology of anaphylaxis
FOOD ALLERGY BACKGROUND
GI Hypersensitivities

IgE-Mediated
- Immediate Hypersensitivity (aka Food Allergy)
- Oral Allergy Syndrome

Mixed
- Eosinophilic Esophagitis (EoE)
- Eosinophilic GI Disease (EGID)

Non-IgE-Mediated
- Food Protein-Induced Enterocolitis (FPIES)
- Milk Protein Intolerance
- Lactose Intolerance
- Celiac Disease
- “Food Sensitivities”
Background

- Roughly 8% of children have a food allergy
 - ~3% of all children have multiple food allergies
- Children with eczema are at significantly increased risk for food allergy
- More common in males (~60%)
- IgE-mediated food allergy is triggered by a specific protein in the food

- Significant burden on quality of life
- Standard of care is unsatisfying
- Strict avoidance
- Education
 - Reading labels
 - Recognizing and treating a reaction
 - Natural history
 - Managing special situations
 - How to use autoinjectable epinephrine
 - Providing Food Allergy Action Plans
- Nutritional monitoring

Epidemic Increase in Food Allergy

Food Allergy Prevalence
(Reported, NHIS data)

Jackson KD, et al. NCHS data brief, no 121. 2013
TOP 8 FOOD ALLERGENS

- Milk
- Soybeans
- Peanuts
- Shellfish
- Fish
- Tree Nuts
- Eggs
- Wheat
Global Variability

- Thailand
 - Fish, shrimp
 - Cow’s Milk
 - Egg
 - Ant egg
- South Korea, Japan
 - Buckwheat
 - Fish, shellfish
 - Bird’s nest
 - Royal jelly

- India
 - Chickpea
- Middle East
 - Sesame seed
- Turkey
 - Beef
- Europe
 - Fruit
 - Vegetables

CAUTION
Limitations

- General v. referral/selected populations
- Retrospective v. prospective
- Oral food challenges
 - Frequency – as clinically indicated v. scheduled intervals
 - Open v. DBPC
- Length or frequency of follow-up evaluation
- Selection bias
- Varying definitions of food allergy
- Overall paucity of data
IN AN IRONIC TWIST OF FATE, DEATH SUCCUMBS TO HIS PEANUT ALLERGY

PEANUT & TREE NUTS
Natural history of peanut allergy and predictors of resolution in the first 4 years of life: A population-based assessment

Rachel L. Peters, MPH, a,b Katrina J. Allen, BMedSc, MBBS, FRACP, FAAAAI, PhD, a,b,d,e
Shyamali C. Dharmage, MBBS, MSc, MD, PhD, a,c Jennifer J. Koplin, PhD, e
Thanh Dang, PhD, a
Kate P. Tilbrook, BSc, a,b Adrian Lowe, PhD, a,c Mimi L. K. Tang, MBBS, PhD, FRACP, FRCPA, FAAAAI, a,b,d and
Lyle C. Gurrin, PhD, a,c for the HealthNuts study Parkville, Australia, and Manchester, United Kingdom
Peanut Allergy After Diagnosis

- 20% outgrow PN allergy
- Reactions occur in 3 to 33% of patients per year
 - May be decreasing
- Repeated exposures do not appear to increase severity
- After age 6y, PN sIgE levels tend to remain relatively stable
- 95% PPV for persistent PN allergy
 - SPT 1y >13mm, 4y > 8
 - sIgE 1y >5, 4y > 2
- Risk of recurrence after passing OFC if not eating regularly
 - Encourage regular consumption
 - Recommend continuing to carry epinephrine for 1-2 years

Tree Nuts

- 30-40% of children with peanut allergy will have at least 1 tree nut allergy
 - ~70% of tree nut allergic children are also allergic to peanut
- 40% with cross-allergy to another tree nut
 - Cashew and Pistachio
 - Walnut and Pecan
 - Increased risk with AD
- ~10% of children will outgrow a tree nut allergy
 - More likely if they outgrew their peanut allergy
- Severe reactions are most common with cashew and walnut

Phenotypical characterization of peanut allergic children with differences in cross-allergy to tree nuts and other legumes

Mathias Cousin1,2, Stéphane Verdun3, Maxime Seynave1, Anne-Christine Vilain1, Amélie Lansiaux3, Anne Decoster4 & Christine Sauvage1

Trends in Peanut Allergy and Sensitization

ADULT FOOD ALLERGY
• Food allergy reported by 21% of adults (20-45y) in a sample in Sweden and Iceland at baseline and 9y follow-up
 • Fruits, vegetables and nuts were most common
 • Reported food allergy was unchanged over time, but sensitization to foods decreased while aeroallergen sensitization increased
Adult-Onset Food Allergy

- Believed to be relatively rare
- More common with fish and shellfish
- Self-report of adult food allergy is uncommonly confirmed with OFC
- Many cases represent OAS

Northwestern chart review
- 15% of new food allergy diagnoses were adult-onset
- Peaked in the early 30s
- Anaphylaxis in 50%

Food triggers
- Shellfish 54%
- Tree nuts 43%
- Fish 15%
- Soy 13%
- Peanut 9%

A Cautionary Tale

- 50y female presents to an allergist
 - Hay fever
 - Vague GI complaints
- SPT
 - Multiple + aeroallergens
 - PN 2+
- sIgE PN 0.69 kU_A/L
- Instructed to avoid PN

- Strictly avoids PN for 3 year, after previously eating and tolerating with no specific concern for reaction
- Undergoes observed PN OFC
 - Develops wheezing with 1g of PN butter

MILK & EGG

Greetings from Wisconsin
"America's Dairyland"
Milk & Egg Natural History

- Generally good prognosis
 - ~70-80% outgrow
 - Persisting longer than previously observed
- Those tolerating baked goods containing milk or egg have a better prognosis
- sIgE and SPT size at diagnosis can help predict who is more likely to outgrow
 - Variability among other factors
- CoFAR calculator
 - http://www.cofargroup.org
Cow’s Milk

- Poorer prognosis
- Moderate to severe AD
- Reaction within first 30d of life
- Lower reaction threshold (<10mL)

- 79% outgrow by 16y
- CoFAR observational cohort
 - 52.6% resolved milk allergy at a median age of 63m

Early-life gut microbiome composition and milk allergy resolution

Supinda Bunyavanich, MD, MPH,a,b Nan Shen, MS,a Alexander Grishin, PhD,b Robert Wood, MD,c Wesley Burks, MD,d Peter Dawson, PhD,e Stacie M. Jones, MD,f Donald Y. M. Leung, MD, PhD,g Hugh Sampson, MD,b Scott Sicherer, MD,b and Jose C. Clemente, PhD,h

New York, NY, Baltimore and Rockville, Md, Chapel Hill, NC, Little Rock, Ark, and Denver, Colo

- CoFAR milk allergy cohort
- No association between early life exposures shaping infant gut microbiome and milk allergy resolution
 - Delivery method, breastfeeding, solid food intake, and antibiotics
 - Microbiome at 3-6m enriched with *Firmicutes* and *Clostridia* associated with resolution
Egg

- Poorer prognosis
 - Systemic reaction to egg
 - AD flare from egg
 - Baked egg reactive
- CoFAR observational cohort
 - 49.3% resolved egg allergy at a median age of 72m
- HealthNuts
 - 47% resolved by 24m
 - Low vitamin D (<50nmol/L) associated with persistent egg allergy

OTHER FOODS
• High-risk, Australian birth cohort (MACS)
 • Born between 1990 and 1994
• Poly-food sensitized children were more likely to have probable food allergy and sensitization at 12 and 18y
• No gender change at adolescence
Wheat

- Wheat sIgE has a poor predictive value
- Unaffected by AD status, multiple food allergy, and other factors

- Hopkins- 62% tolerant by 10y
- Poland- 76% tolerant by 18y
- Japan- 66.3% tolerant by 6y

Soy

- 69% outgrow by 10y
- Unaffected by AD status, multiple food allergy, and other factors

Other Foods

• Reactions to uncommon food allergens are rare despite larger SPT and sIgE
• 18% failed these foods v. 45% for common allergens (PN, milk, egg, wheat)
ANAPHYLAXIS
Anaphylaxis

- Food is the most common trigger
 - Estimates vary from 0.4% to 40% of allergic food reactions resulting in anaphylaxis
- Incidence has increased, but fatalities have not
 - New York State, 1990-2006- >4-fold increase in hospitalization for anaphylaxis
 - UK, 1990-2012- doubling of hospitalization for food-induced anaphylaxis
- African American and Hispanic children have significantly higher rates of food-induced anaphylaxis, and more ED visits
- Risk factors for severe anaphylaxis
 - Older age and comorbid conditions (CV disease, etc)
 - Sub-optimal asthma control
 - Better prognosis with a history of AD, and AI consultation within 12m

Anaphylaxis Compared to Other Emergencies

FPIES
Food Protein Induced Enterocolitis Syndrome
What is FPIES?

- Infants <12m (mean 5.5m)
 - Adults with fish and shellfish
- Onset of symptoms 1-4 hours after ingestion, resolution in 6 hours
 - Vomiting (100%)
 - Lethargy (85%)
 - Pallor (67%)
 - Diarrhea (24%), later onset and prolonged
 - Hypothermia (temp <36°C, 24%)
 - Hypotension (15%)

- Common triggers
 - Cow’s Milk
 - Soy
 - Grains
 - Rice
 - Oat
 - Poultry
 - Fish and Shellfish
 - Legumes
 - Banana
 - Vegetables
 - Avocado
 - Sweet potato

Epidemiology

- The incidence in a large Israeli birth cohort was 0.34%
- Male predominance (60%)
- Negative family history
- Not highly atopic

Natural History

- Majority outgrow milk/soy FPIES by the age of 30 months-3y
 - Food-specific rates vary widely by study
- No secondary cases of IgE mediated food allergy HAD been reported
 - Sinai has ~25% with FPIES and IgE-mediated FA
 - *So…SPT prior to reintroduction after a period of avoidance

FIG 5. Kaplan-Meier plot for the cumulative probability of recovery from CMP-induced FPIES. More than 90% of patients recovered from FPIES after 900 days.

<table>
<thead>
<tr>
<th>Food</th>
<th>Resolution</th>
<th>Study</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk</td>
<td>64% by 10m</td>
<td>Hwang 2007</td>
<td>Korea</td>
</tr>
<tr>
<td></td>
<td>100% by 20m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>94% by 30m</td>
<td>Katz 2011</td>
<td>Israel</td>
</tr>
<tr>
<td>*IgE negative</td>
<td>25% by 3y</td>
<td>Caubet 2014</td>
<td>NYC (Sinai)</td>
</tr>
<tr>
<td></td>
<td>90% by 3y</td>
<td>Lee 2017</td>
<td>Australia</td>
</tr>
<tr>
<td>Soy</td>
<td>80% by 5y</td>
<td>Vazquez-Ortiz 2017</td>
<td>Spain</td>
</tr>
<tr>
<td></td>
<td>83% by 3y</td>
<td>Mehr 2009</td>
<td>Australia</td>
</tr>
<tr>
<td></td>
<td>27% by 3y</td>
<td>Anna NW 2003</td>
<td>NYC (Sinai)</td>
</tr>
<tr>
<td></td>
<td>20% by 3y</td>
<td>Caubet 2014</td>
<td>NYC (Sinai)</td>
</tr>
<tr>
<td>Rice</td>
<td>83% by 3y</td>
<td>Mehr 2009</td>
<td>Australia</td>
</tr>
<tr>
<td></td>
<td>40% by 3y</td>
<td>Anna NW 2003</td>
<td>NYC (Sinai)</td>
</tr>
<tr>
<td></td>
<td>30% by 3y</td>
<td>Caubet 2014</td>
<td>NYC (Sinai)</td>
</tr>
<tr>
<td></td>
<td>100% by 5y</td>
<td>Vazquez-Ortiz 2017</td>
<td>Spain</td>
</tr>
<tr>
<td>Oat</td>
<td>30% by 3y</td>
<td>Caubet 2014</td>
<td>NYC (Sinai)</td>
</tr>
<tr>
<td>Fish</td>
<td>75% by 5y</td>
<td>Vazquez-Ortiz 2017</td>
<td>Spain</td>
</tr>
<tr>
<td>Egg</td>
<td>30% by 5y</td>
<td>Vazquez-Ortiz 2017</td>
<td>Spain</td>
</tr>
</tbody>
</table>
WHAT IS NATURAL HISTORY?
Remaining Questions and Future Directions

• What is different about the different allergens?

• Are we seeing changes in the natural history or only observing different cohorts?

• What characterizes the development of tolerance?

• Can we modify the natural history?
 • Early introduction
 • Prevent atopic dermatitis?
 • Emerging treatments?
 • Role for biologics?
 • Vitamin D?
Important Points

- Milk, egg, wheat and soy allergies have a good prognosis
 - 70-80% will outgrow during childhood
- Peanut allergy is consistently observed to resolve in 20% without intervention
- Tree nuts, seeds, fish and shellfish are uncommonly outgrown
 - 0-10%
- Data is lacking for other foods, and in adults
- Larger SPT and higher sIgE = less likely to outgrow
- Annual follow-up with sIgE (+/- SPT) is recommended
 - Space if unlikely to develop tolerance
 - Should have a higher threshold for doing an OFC if no history of reaction and if it is an uncommon food
THANK YOU!

A special thank you to my mentors, Drew Bird, Allan Bock, and Donald Leung
Questions & Discussion
The Natural History of Food Allergy

Bruce J. Lanser, MD
Assistant Professor of Pediatrics
Director, National Jewish Health Pediatric Food Allergy Center
Associate Director, Pediatric Allergy Fellowship Training Program